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The shapes of dendritic arbors are fascinating and important, yet
the principles underlying these complex and diverse structures
remain unclear. Here, we analyzed basal dendritic arbors of 2,171
pyramidal neurons sampled from mammalian brains and discov-
ered 3 statistical properties: the dendritic arbor size scales with the
total dendritic length, the spatial correlation of dendritic branches
within an arbor has a universal functional form, and small parts of
an arbor are self-similar. We proposed that these properties result
from maximizing the repertoire of possible connectivity patterns
between dendrites and surrounding axons while keeping the cost
of dendrites low. We solved this optimization problem by drawing
an analogy with maximization of the entropy for a given energy
in statistical physics. The solution is consistent with the above
observations and predicts scaling relations that can be tested
experimentally. In addition, our theory explains why dendritic
branches of pyramidal cells are distributed more sparsely than
those of Purkinje cells. Our results represent a step toward a
unifying view of the relationship between neuronal morphology
and function.
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Mammalian neurons consist of a cell body and dendritic and
axonal arbors (ref. 1 and Fig. 1). The dendritic arbor is a

complex branching structure, which receives signals from thou-
sands of other neurons and conducts them toward the cell body,
where they are integrated. The axonal arbor typically spans a
larger territory than a dendritic arbor and conducts signals from
the cell body to synapses, where signals are transmitted to
dendrites of thousands of other neurons (Fig. 1). The majority
of synapses on neurons discussed below are formed on short
dendritic protrusions called spines (Fig. 1). Because synaptic
transmission requires a physical contact between dendrites and
axons, dendritic arbor shape determines which axons are acces-
sible to which dendrites (2–9). This suggests that the spatial
distribution of dendrites is important for understanding brain
function (10–15).

Interestingly, dendritic arbor shape can vary widely among
neurons of the same class and between different classes. Con-
sider, for example, pyramidal cells, which comprise �80% of all
neurons in the cerebral cortex (16). The total length of basal
dendrites of pyramidal cells L, and the basal arbor radius R,
defined as the rms distance between any 2 dendritic segments
(Fig. 2A), vary widely among different areas of the cortex
(17–19). Furthermore, dendritic branches of pyramidal cells are
distributed more sparsely than those of Purkinje cells, the
principal neurons in the cerebellum (ref. 11 and Fig. 2B). To use
these observations for inferring neuronal function, we need to
identify principles governing arbor shape.

We start by showing that, within pyramidal cell class, R and L,
and the short-range correlation in the locations of dendrites
within a cell, follow scaling laws. The corresponding exponents
are related, suggesting that statistics of different arbors and

different parts of the same arbor are governed by one principle.
Second, we propose an explanation for these observations by
viewing dendritic arbor shape as an outcome of optimization by
natural selection (1), a process that maximizes dendritic func-
tionality for a given dendritic cost to the organism (1, 20–24).
Our solution of this optimization problem is consistent with our
measurements and accounts for the variation in arbor shape.

Results
Scaling, Universality, and Self-Similarity of Basal Dendritic Arbors of
Pyramidal Neurons. We measured dimensions of dendritic arbors
from a dataset obtained over the past decade by labeling and
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Fig. 1. Schematic illustration of pyramidal cell morphology. Basal dendritic
arbor consists of a few primary branches stemming from the cell body and
bifurcating repeatedly (red). Apical dendritic arbor (orange) typically consists
of a single trunk, which branches in the upper layers of the neocortex.
Dendrites receive synapses from axons (blue) of other neurons. These synapses
are typically formed on dendritic spines (Inset).
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reconstructing pyramidal neurons (17, 25). Although the total
dendritic length, L, and the arbor radius, R, vary widely among
different areas in the neocortex, we found that they are corre-
lated via a power law, R � Lv (Fig. 3A).

Next, we explored statistical properties of branching by ana-
lyzing the spatial correlations among branches of an arbor. To
this end, we counted the number of pairs of dendritic segments
separated by distance r. We expressed the distance in units of R
and rescaled the counts, ñ, so that the area under the ñ(r/R) curve
is normalized to 1 (Fig. 3B). Unexpectedly, the dependencies
ñ(r/R) for different arbors collapse onto a single curve (see Fig.
3B and SI Appendix, section I.3).

The universality of the pairwise correlations in the locations
of dendritic segments suggests that dendritic arbors of pyramidal
cells are built by statistically similar processes. Moreover, the
rising part of ñ is well fit by a power law ñ � (r/R)� (Fig. 3B Inset),
indicating that a fragment of an arbor is statistically similar to the
scaled-down version of the whole arbor (excluding the periph-
ery) (27–32) (C. F. Stevens, personal communication). These

conclusions are further supported by the fact that the measured
exponent �, characterizing the scaling of arbor dimensions across
different cells (Fig. 3A), and the self-similarity exponent � (Fig.
3B) are consistent with

� �
1
v

� 1, [1]

a relation that results from statistical similarity through a
standard scaling argument (see SI Appendix, section I.4). Thus,
we conclude that the shape of basal dendrites of pyramidal cells
in the cerebral cortex exhibit universality and self-similarity.

Connectivity Repertoire and Dendritic Cost. We propose that the
above statistical properties of basal dendrites of pyramidal cells
can result from maximizing their functionality for a fixed den-
dritic cost to the organism. Let us focus first on the arbor
functionality, which we identify with integrating synaptic cur-
rents from appropriate neurons. In a zeroth-order approxima-
tion, we consider which neurons synapse on the arbor rather than
where the synapses are made. This approximation ignores pos-
sible nonlinear operations, which might take advantage of the
synaptic location on the dendritic arbor (13–15). Yet, we think
that this is a reasonable first step because nonlinear operations
could not be performed if the appropriate neurons were not
connected in the first place.

In an adult brain, a dendritic arbor connects with a combi-
nation of appropriate neurons, whose axons are distributed
sparsely, constituting �10% of all axons passing through the
arbor territory (7, 33–35). Locations of appropriate axons are not
known to the dendrites before arbor growth. In the course of
neuronal development, the arbor must find an appropriate
combination in the ensemble of accessible neuron combinations
defined by arbor dimensions. Then, finding a more appropriate
combination would require choosing arbor dimensions that have
a larger ensemble. Furthermore, if the developmental search
strategy is sufficiently good, the larger the ensemble of neuron
combinations available to the arbor, the more appropriate
neuron combination can be found.

Therefore, we can quantify arbor functionality by the number
of different combinations of neurons available to an arbor. To
reduce the arbor functionality to an additive and extensive
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Fig. 2. Variation in dendritic arbor shape within and among different
neuronal classes. (A) Basal dendritic arbors of pyramidal cells in different
cortical areas of primates differ in total dendritic length L and arbor radius R.
(B) Basal dendrites of a pyramidal cell are distributed more sparsely than those
of a Purkinje cell. Both cells are from rat brains (refs. 26, 74, and 75, and
http://NeuroMorpho.Org).

Fig. 3. Scaling, universality, and self-similarity of basal dendritic arbors of pyramidal neurons. (A) Dendritic arbor radius scales as a power of the total dendritic
length. For 2,161 shrinkage-corrected 2D reconstructions of basal dendrites of pyramidal cells from different cortical areas, the power is 0.44 � 0.01. The 10
available shrinkage-corrected 3D reconstructions (25) (3D dataset) are consistent with this relationship. (Inset) The same data on log-log scale. (B) Spatial pairwise
correlation between dendritic segments for each neuron from the 3D dataset is shown in rescaled coordinates. (Upper Inset) Illustration of how the measurement
was performed: counts of intersections between concentric spheres and dendritic branches were averaged over random sphere center locations in the central
part of the dendritic arbor. Curves corresponding to different neurons collapse onto a master curve, fit by a universal function (magenta line), in which � and
� are the only fitting parameters; coefficients g and h are fully determined by the normalization conditions (SI Appendix, section I.3). (Lower Inset) Shown is the
rising part of the plot on log-log scale, indicating a power-law relationship and self-similarity of arbor shape.

Wen et al. PNAS � July 28, 2009 � vol. 106 � no. 30 � 12537

N
EU

RO
SC

IE
N

CE

http://www.pnas.org/cgi/data/0901530106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0901530106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0901530106/DCSupplemental/Appendix_PDF


quantity (i.e., it doubles if L is doubled), we consider the
logarithm of the number of neuron combinations accessible to an
arbor of given arbor dimensions, which we call the connectivity
repertoire. Thus, maximizing arbor functionality reduces to
finding arbor dimensions that maximize the connectivity reper-
toire (see SI Appendix, section II.1 for further details).

We computed the connectivity repertoire by adding the
following 2 contributions. First, for given arbor dimensions, we
counted all possible different shapes of a dendritic arbor. Each
arbor shape selects a different subset of axons that pass within
a spine length of a dendrite, the spine-reach zone, and, hence,
can synapse on the dendrite via spine growth (Fig. 4 A). We call
the corresponding axon-dendrite proximities potential synapses
(7, 36). Second, for a given arbor shape, we enumerated the
number of combinations of choosing actual synapses out of
potential synapses (Fig. 4A).

Whereas the second contribution is straightforward to calcu-
late (7), the first contribution is challenging because locations of
potential synapses are strongly correlated with each other be-
cause of the contiguous nature of an arbor. Fortunately, a similar
problem has been solved in statistical physics by expressing the
astronomical number of different conformations of a branched
polymer in terms of its dimensions (37, 38). Using this analogy,
we derived an expression for the connectivity repertoire, S, in
terms of 3 arbor dimensions (see SI Appendix, sections II.2–5):
L, R, and the average distance along the path from the tip of a
branch to the cell body, � (Fig. 4A),

S � S0 �
L
a

ln�1 � R /�� �
�2

La
�

L2

R2 . [2]

Before maximizing S in Eq. 2 with respect to R and �, let us
explain the biological meaning of each term. The first term
contains contributions independent of R and � (both from
variations in arbor shape and from selecting actual synapses out
of potential ones) and, thus, will not be considered further.

The second and third terms are R- and �-dependent correc-
tions to the numbers of different arbor shapes. The second term
reflects the fact that straighter branches can come in fewer
different shapes (38) and is always negative. As dendrites
become straighter, the path length � approaches from above the
Euclidian distance between the tip of a branch and the cell body
(approximated by R), and the second term decreases dramati-
cally. Therefore, maximizing the number of arbor shapes favors
R �� �, that is tortuous branches (Fig. 4B). The third term
reflects the fact that maximizing the number of arbor shapes
favors branchy dendrites (� �� L) (Fig. 4B and ref. 37). In these
terms, a is the persistence length, below which a dendrite cannot
bend (38).

The last term in Eq. 2 is an R-dependent correction to the
contribution to S arising from choosing actual synapses out of
potential ones. Some axons could establish more than 1 potential
synapse in different locations on a dendritic arbor (Fig. 4C). If
the entire dendritic arbor acts as a unit, differences in the
locations of actual synapses from the same axon do not affect the
function (39–42). As a result, additional potential synapses from
the same axon are redundant and do not make a contribution to
S. Thus, in calculating S, we should subtract the overcounting
caused by multiple potential synapses, which, for isotropically
distributed straight axons (6, 25, 43), is given by the last term.

Maximizing S favors fewer multiple potential synapses from
the same axon and hence smaller last term. Reducing the last
term calls for a larger R for a given L, or lower dendrite density
(Fig. 4D). Thus, avoidance of multiple potential synapses leads
to a statistical preference for arbors with sparsely distributed
branches, in agreement with experimental data (see below).

However, maximization of S alone resulted in more tortuous
dendrites than those observed in a pyramidal cell (see Fig. 4 D

and E and SI Appendix, section II.6), indicating that some other
factor must be responsible for the straightness of dendrites
(44–46) (Fig. 4E). We propose that such a factor is dendritic cost
minimization. Tortuous branches entail longer intracellular
paths from synapses to the cell body, resulting in greater
metabolic expenditures for protein transport or for counteract-
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Fig. 4. Dendritic arbor shapes reflect maximization of the connectivity
repertoire for a given dendritic cost. (A) Schematic illustration of a 3D basal
dendritic arbor of pyramidal cell projected onto a plane and nearby axons that
are labeled based on their relations to the arbor. For illustration purposes, we
have shown all axons as running orthogonally to the plane of the drawing.
Actual synapses are a subset of potential synapses, which in turn are chosen
out of a larger set of axons. Potential synapses are located within the spine-
reach zone of a dendrite (gray). (B) Tortuous and branchy dendrites maximize
the total number of different arbor shapes quantified by the second and third
terms in Eq. 2. (C) Some axons form multiple potential synapses with a 3D
dendritic arbor (crossed black circles here and in A). (D) A sparse arbor, which
has lower dendrite density for a given total dendritic length, has fewer
multiple potential synapses and, hence, maximizes the connectivity reper-
toire. (E) Tortuosity measured as a function of the average Euclidean distance
from the tip of a branch to the cell body R(�). The best fit (magenta line)
suggests that basal dendrites are approximately straight. Orange line shows
tortuous dendrites predicted from maximizing the connectivity repertoire
alone, R � a1/8�7/8 (see also D and SI Appendix, section II.7 for detailed
derivation). Each point represents a different cell from the 2D dataset. (F)
Normalized tortuosity index as a function of the normalized path length from
a dendritic segment to cell body. The tortuosity index T is defined as the ratio
of the length along a path to the Euclidean distance between its ends minus
one. In rescaled coordinates, the tortuosity was measured in units of the
average index value over all paths within an arbor. The path length was
measured in units of the average length over all paths within an arbor as well.
Magenta line is a power law fit. Inset shows the same data on log-log scale.
Error bars show SEM.
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ing the attenuation of postsynaptic currents. By taking into
account the cost contributed by path length (47–49) and total
wiring length (20–23), we found that the cost function E has the
scaling form E � L�� (49), where � is model-dependent.

Predictions from Functionality-Cost Optimization and Experimental
Measurements. Maximizing the connectivity repertoire for a given
dendritic cost reduces to maximizing their combination: S � �E,
where � is the weight of E relative to S. We solved this
optimization problem (analogous to maximizing entropy for a
given energy in statistical physics) and derived analytical expres-
sions relating arbor dimensions �, R, and L (see SI Appendix,
sections II.8–10). Next, we compare these expressions with
experimental measurements.

First, optimal � and R satisfy the relation: �/R � 1 � 1/��,
where �/R � 1 is defined as the tortuosity index. This prediction
is consistent with measurements from basal dendrites of pyra-
midal cells. The tortuosity index of a path from a dendritic
segment to cell body decreases with the path length and their
relationship can be well fit by a power law with exponent � �
0.31 	/� 0.01 (Fig. 4F).

Second, our optimization framework predicts that R and L
should satisfy a power law relation with the exponent � � 1/(2 	
�). Substituting the empirically measured value for �, we find � �
0.43, which is not significantly different from the direct mea-
surement of this exponent, � � 0.44 	/� 0.01 (Fig. 3A). In
addition, by fitting the theoretical relation between R and L to
measured arbor dimensions, we determined � � 1.2 	/� 0.2
�m�1.3, which was unknown.

Third, the analogy between our optimization framework and
the statistical physics of polymers (38) motivates the functional
form of ñ (Fig. 3B). The best-fit value of � � 1.38 	/� 0.06 (Fig.
3B) is not significantly different from � � 1.27 	/� 0.05, which
was found by substituting the value of � found above into Eq. 1.

Finally, we showed that, in the case of isotropically distributed
axons, avoiding multiple potential synapses leads to an arbor
territory greater than the total area of the spine-reach zone (Fig.
4A and Fig. S3 a and c in SI Appendix). This accounts for the
sparseness of basal dendritic arbors of pyramidal cells, which
form potential synapses with only a small fraction of axons
passing through the arbor territory (6) (Fig. 2B and Fig. S3 a and
c in SI Appendix).

In the case of anisotropic distribution of axons and dendrites,
avoidance of multiple potential synapses may not lead to a sparse
arbor. For example, if all axons were oriented orthogonally to a
planar dendritic arbor, such as parallel fibers and Purkinje cell
dendrites in the cerebellum (50), multiple potential synapses
could be avoided by arranging dendritic branches so that their
spine-reach zones do not overlap. Thus, to minimize the cost of
dendrites, the arbor must contract until the spine-reach zone
covers most of the arbor territory, just as in Purkinje cell
dendrites (49) (Fig. 2B and Fig. S3 b and c in SI Appendix).
Although a projection of Purkinje dendritic arbor on the direc-
tion other than that of parallel fibers would contain many
overlaps of the spine-reach zone, this would not generate
multiple potential synapses for parallel fibers.

Discussion
Here, we proposed that, for a given path length cost, maximi-
zation of the connectivity repertoire, via avoiding multiple
potential synapses from the same axon, accounts for statistical
properties of dendritic arbors in pyramidal and Purkinje cells.

Are our results applicable to cell classes other than pyramidal
and Purkinje cells? We note that the basic aspects of our theory
still hold even if some assumptions were relaxed. (i) If presyn-
aptic axons are tortuous and/or branchy rather than straight on
the scale of a dendritic arbor, our theory would still hold but
predict different scaling exponents. (ii) If an individual dendritic

branch rather than the whole arbor acts as a unit (51–53), actual
synapses from the same axon lead to the same functionality only
when they occur on the same branch. In this case, calculations
would be different but the general framework would still hold.

However, arbor shapes would fall outside the current theo-
retical framework in the following cases. (i) Instead of maxi-
mizing the connectivity repertoire, the objective of some den-
drites could be to maximize the number of synaptic contacts with
the same presynaptic neuron. One example of such scenario is
photoreceptor innervation of large monopolar cells in the insect
optic lobe (54). (ii) Spatial distribution of axons from appropri-
ate neurons may not be a priori unknown to the arbor but
partially or fully predetermined. For example, layer V apical
dendrites reach out to upper cortical layers I–III containing
axons of appropriate neurons, which is why we restricted our
analysis to basal dendritic arbors. To determine whether our
theory is applicable to various cell types, large datasets of
high-quality arbor reconstructions would be desirable.

Why do we believe that the distribution of axons presynaptic
to basal pyramidal dendrites is not predetermined? (i) Specificity
in the location of pyramidal axons has been demonstrated only
on the scale of cortical layers and columns, which is greater than
the radius of a basal dendritic arbor (�100 �m) (55, 56). (ii) On
the smaller scale (�100 �m), pyramidal axons follow relatively
straight trajectories in various directions (25, 43, 46, 57–59), and,
thus, are unlikely to organize into specific patterns. (iii) As
synapses on a pyramidal dendrite are made approximately every
half micrometer, it is unclear how axons from appropriate
neurons could align along dendrites in such a precise manner.
Even if this arrangement could be achieved for 1 dendritic arbor,
thousands of other arbors present in the dendritic territory
would require a rearrangement of axons from one dendrite to the
next, a scenario that is highly improbable.

One may question the validity of our assumption that pyra-
midal cell dendrites avoid multiple potential synapses because
experiments indicate that synaptically coupled cortical neurons
share multiple synaptic contacts (33, 60). However, this obser-
vation does not contradict our theory for 2 reasons. First,
electrophysiological recordings are heavily biased toward con-
nected and hence nearby neurons. Although nearby neurons may
make many potential synapses, these presynaptic neurons are in
a minority. Indeed, in V1, 83% of synapses on a dendrite
originate from neurons located farther than 200 �m in the
cortical plane (61). For these presynaptic neurons, typically only
1 axonal branch courses through the dendritic arbor territory and
hence is unlikely to make multiple potential synapses. Second, it
is possible that various synaptic contacts form independently
according to some local rules. Therefore, development can only
strive to avoid multiple potential synapses but cannot guarantee
their complete absence.

The cornerstone of our theory is the idea that a dendritic arbor
avoids multiple hits with the same axon, which could multiply not
just actual synapses, but also potential ones. Such avoidance
results in a statistical repulsion between branches. To go beyond
our teleological theory and speculate about possible develop-
mental mechanisms responsible for repulsion, we must distin-
guish the following 2 logical possibilities. First, growing dendrites
may effectively repel each other, via either extracellular or
intracellular mechanism, thus making the arbor more extended
and reducing multiple hits. Second, arbors somehow detect
multiple hits with the same axon and rearrange their shapes in
response. We think that the latter possibility is less realistic, not
only because it would be difficult for a cell to detect multiple hits
from the same axon on the background of simultaneous signals
from thousands of other inputs, but mostly because dendrites
should avoid multiplying even potential synapses that generate
no electrical signal in dendrites. We therefore think that the first
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possibility, avoidance of multiple hits as a consequence of
interaction between branches, is more realistic.

Although a mechanism for such extracellular interaction
among dendrites is unknown in vertebrates, it has been discov-
ered in invertebrates in the form of homophilic Dscam interac-
tion (45, 62–64). Because of a large number of stochastically
chosen splice isoforms, this molecule can mediate self-repulsion
among branches of the same neuron without inducing interac-
tions among different neurons. However, Dscams are thought to
be nondiffusible and hence incapable of acting over long dis-
tances. Moreover, a vertebrate homolog of invertebrate Dscam
does not have a large number of splice isoforms (65, 66). We
conjecture that a diffusible molecule with a large number of
isoforms mediates self-repulsion in vertebrates.

Alternatively, intracellular interaction among dendrites may
be reflected in arbor growth rules effectively enforcing repul-
sion. Historically, such growth rules have played a central role in
computer simulations of arbor shapes (45, 67–69). Interestingly,
effective repulsion between the cell body and dendrites was
introduced to reproduce realistic arbor shapes (45). Although
the proposed repulsion can explain the straightness of dendritic
branches and their centripetal orientation (45, 70), it does not
account for the distribution of the nearest-neighbor distance
among branches (71). Here, based on the analysis of dendritic
functionality, we proposed that effective repulsion exists among
all segments of a dendritic arbor, not just between the cell body
and dendrites.

Finally, the idea that the avoidance of multiple hits affects
arbor shape may not be limited to neurons and apply to other
biological objects. Consider, for example, the spatial arrange-
ment of tree branches. As a tree strives to maximize its exposure
to sunlight, its leaves must avoid shading each other (72, 73),
which means that the branches should minimize multiple hits
with light rays coming from the sun. Because light rays come
from varying directions, they induce repulsion among branches,
similarly to self-repulsion in dendritic arbors of pyramidal cells.
Because the cost of branches is likely to grow with both the total
length and the path length, our theory should apply to the spatial
distribution of tree branches as well. Thus, the similarity of

shapes between neurons and trees may not be a coincidence but
arise from mathematically similar evolutionary objectives.

Methods
Arbor Reconstruction. The 2D dataset comprises 2,161 basal dendritic arbors of
layer 3 pyramidal cells from primate neocortex, which were labeled in vitro
with Lucifer yellow and reconstructed with a Camera Lucida by drawing on a
2D projection (17). The 3D dataset comprises 10 basal dendritic arbors of
pyramidal cells from cat primary visual cortex (V1) (25), which were labeled in
vivo with biocytin and reconstructed in 3D from multiple tissue sections by
using Neurolucida (MicroBrightField) (www.neuromorpho.org and ref. 74).
The Purkinje dataset comprises 10 Purkinje dendrites digitally reconstructed
by several experimental groups (www.neuromorpho.org and refs. 75–77).

Data Analysis. We measured arbor radius and total dendritic length for
Purkinje dendrites and basal pyramidal dendrites in the 2D and 3D datasets.
Because cells in the 2D dataset were not digitized, we skeletonized black and
white images so that dendritic segments are represented by lines 1 pixel wide.
We measured pairwise correlation in the locations of dendritic segments of
basal pyramidal dendrites. We also measured the tortuosity of dendrites in
345 pyramidal cells from various cortical areas of 1 vervet and 1 baboon
monkey, a subset of the 2D dataset. To this end, we vectorized cell drawings
by manually tracing dendrites using NeuronJ (a plug-in to ImageJ). See SI
Appendix for further details of all measurements.

Theory. First, we derived Eq. 1 through a standard scaling argument of
statistical similarity. Second, we formulated our theory based on the hypoth-
esis that dendritic arbor shapes result from maximizing the functionality for a
given dendritic cost. We argued that maximizing the dendritic functionality
can be reduced to maximizing the connectivity repertoire. Third, we derived
an analytical expression for the connectivity repertoire (Eq. 2). Fourth, we
derived an expression for the dendritic cost. Finally, we solved our optimiza-
tion problem and compared the results with experimental measurements. See
SI Appendix for further details of the mathematical derivation.
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