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Abstract of the Dissertation

An Optimization Theory of Brain
Structures

by

Quan Wen

Doctor of Philosophy

in

Physics

Stony Brook University

2007

Over hundreds of millions of years, the nervous systems have

evolved to maximize their functionality and reduce the cost as-

sociated with building and maintenance. In this thesis, we use

optimization theory to explain various aspects of brain structures.

Starting from the cost-benefit analysis of axons, we first explain

why some long-range axons in the brain are myelinated and some

others are not. Second, we develop a theory explaining why long-

range axons and local arbors are segregated spatially, which gives

rise to two distinguished tissues – the white and gray matter.

Third, we quantify and minimize the cost in the dendrite and
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explain several salient features of Purkinje dendrites in the cere-

bellum. Finally, to quantify the functional roles of dendrites, we

posit that the dendritic arbors not only minimize their cost, but

also maximize the available connectivity patterns. We develop a

statistical theory of neuronal shape and predict several scaling re-

lationships that can be directly tested from the anatomical data.
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Chapter 1

Introduction

Studying the structure of an organ helps unravel the mystery of its func-

tion. More than one hundred years ago, by applying the histological staining

technique to study the anatomy of nervous systems, Santiago Ramón y Cajal,

one of the founders of modern neurobiology, formulated the “neuron doctrine.”

He proposed that the brain is made up of billions of separate neurons, and

these cells are interconnected with each other by two polarized components,

axons and dendrites. The function of dendrites and axons is to conduct elec-

trical signals from post-synaptic terminals to the integration site, which often

is the cell body, and from the integration site to the pre-synaptic terminals,

respectively.

One hundred years later, neurobiologists, armed with advanced tools, are

embracing a great opportunity to dissect the complex structure of the neuronal

circuitry. For instance, cell-labeling methods such as those based on biocytin

or green fluorescent protein (GFP) make it possible to describe neuronal arbors

in a comprehensive and quantitative way. Reconstructing the wiring diagram

of the brain circuitry may become an attainable goal due to the development
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of electron microscopy. However, a quantitative theory of brain anatomy does

not exist. Such a theory should formulate the principles of brain design and

establish relationships between structures and functions.

Insight in this direction was also contributed by Cajal, as he wrote [1]

“After the many shapes assumed by neurons, we are now in a position to

ask whether this diversity ... has been left to chance and is insignificant, or

whether it is tightly regulated and provides an advantage to the organism.

... we realized that all of the various conformations of the neuron and its

various components are simply morphological adaptations governed by laws of

conservation for time, space, and material.”

Echoing Cajal’s thoughts, we propose that evolution has “tinkered” with

brain design to maximize its functionality while minimizing the cost associ-

ated with building and maintaining it. This hypothesis can be formulated by

an optimization approach. Specifically, brain functionality must benefit from

high synaptic connectivity and large plasticity, because synaptic connections

are central to information processing as well as learning and memory, which

is thought to manifest itself in synaptic modifications. However, increasing

connectivity requires adding wiring to the network, which comes at a cost.

The cost of wiring could be accrued by various things, including conduction

delays, signal attenuation, and wiring volume.

We will elaborate upon these points in the following chapters of the thesis

and explain various aspects of the brain structures. In summary, we obtained

two major results. First, based on the hypothesis that the brain maximizes

the synaptic connectivity while minimizing conduction delays in axons and

dendrites, we developed an optimization theory explaining why the brain is
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segregated into gray and white matter, a ubiquitous feature in the vertebrates.

The theory provides a possible explanation for the structure of various brain

regions such as cerebral cortex, neostriatum, and spinal cord. Moreover, we

derive a formula for the cortical thickness that can be directly tested from

the anatomical data. Second, by analyzing a large dataset of pyramidal cells,

we observe scaling in the dendritic arbors. Among other things, we find that

the dependence of dendritic arbor span on the total dendritic length can be

fitted by a power law. Next, we turn to a theoretical explanation based on the

assumption that a dendritic arbor maximizes the number of different connec-

tivity patterns while minimizing its own cost. Our theory is able to calculate

the critical exponent in the scaling law and explain the variations of arbor

shape among different cell types.
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Chapter 2

To Myelinate or Not To

Myelinate

2.1 Background

In vertebrate brains, axons are often myelinated, i.e., wrapped in a

thin myelin sheath. Myelinated and non-myelinated axons co-exist in many

structures, such as the corpus callosum. This observation leads to a question:

why does nature myelinate some axons but not others? Understanding this

question may shed light on the principles of brain design. About half a century

ago, Rushton [3] proposed an answer, which can be stated as follows (see also

Waxman and Bennett [2]): The crucial difference between a myelinated and

a non-myelinated axon is in how the conduction velocity scales with axon

diameter, as shown in Figure 2.1 (redrawn from Waxman and Bennett [2]). In

a myelinated axon, conduction velocity (CV), vm, increases linearly with the
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Figure 2.1: Conduction velocity as a function of the axon diameter for myeli-
nated and non-myelinated axons, modified from Waxman and Bennett [2].
Axon diameters much smaller 0.1 micron are not observed experimentally and
plots in this regime are represented by dashed lines. At d0, myelinated and
non-myelinated axons have the same CV, v0.

axon diameter [3, 4] as:

vm = BD, (2.1)

where B is the proportionality constant with dimension m/s·µm−1, and D is

the axon diameter including the myelin sheath. In a non-myelinated axon,

CV, vn, increases with the square root of axon diameter, da[5, 3, 4, 6]:

vn = b
√

da, (2.2)

where b is also a proportionality constant with the dimension m/s·µm−1/2.

Because axon diameters smaller than 0.1 micron have rarely been observed

experimentally, Equations 2.1-2.2 are valid only for relatively large axon di-

ameters (solid lines in Figure 2.1).
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According to Equations 2.1-2.2, there is a diameter, d0, at which the CVs,

v0, in a myelinated and a non-myelinated axon are the same (Figure 2.1):

v0 = BD = b
√

da =
b2

B
. (2.3)

Rushton [3] proposed that, for a given CV, nature picks an axon with a smaller

diameter. If the required CV is less than v0, a non-myelinated axon is thinner

and preferred. Otherwise, a myelinated axon is thinner and preferred (Fig-

ure 2.1).

It follows from Rushton’s argument that there is a critical axon diam-

eter d0 (d0 ≈ 0.2 µm) according to Waxman and Bennett [2]). All axons

that are thinner than d0 should be non-myelinated, and those thicker than d0

should be myelinated. This prediction does not accord with experimental data

[7, 8, 9, 10]. Although myelinated axons are typically thicker than the non-

myelinated ones, the diameter distributions of myelinated and non-myelinated

axons overlap.

In this chapter, we resolve this old issue by assuming explicit expressions

of axonal cost for both myelinated and non-myelinated axons. We point out

that minimization of the axonal cost does not necessarily lead to the existence

of a critical axon diameter. In particular, we consider two possible optimization

scenarios. In the first scenario, we assume that the conduction delay in an axon

(i.e., the time taken for an action potential to travel between two end points)

is set a priori, and that the axon cost is proportional to its volume. Depending

on the relative cost per volume for a myelinated and non-myelinated axon, the

distributions of axon diameters can overlap or be separated by a gap. In the
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second scenario, we assume that the conduction delay is not fixed. Rather, an

increase in the conduction delay invokes a finite cost. We then search for the

axon design that optimizes the cost function, including volume and conduction

delay. Interestingly, the latter scenario predicts that there must be a gap in

the conduction velocity distribution of the axons.

2.2 Axonal cost with Fixed Conduction Delay

In this section, we formulate the following two-choice problem: given

the conduction delay in an axon, should the axon be myelinated or non-

myelinated? We will answer this question for a non-branching axon with fixed

length by calculating the axonal cost as a function of CV. Assuming that the

cost is proportional to the axonal volume [11, 12, 13], the costs of a myelinated

and a non-myelinated axon per length are given by :

εm = K
π

4
D2, (2.4)

εn = k
π

4
d2, (2.5)

where K and k are costs per volume for myelinated and non-myelinated axons

respectively. By substituting Equations 2.1-2.2, we express the axonal costs

in terms of CV:

εm = K
πv2

m

4B2
, (2.6)

εn = k
πv4

n

4b4
. (2.7)

By setting εm = εn, we determine the critical CV vc where the costs of a
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myelinated and a non-myelinated axon are equal (see Figure 2.2A):

vc =

√
K

k
v0. (2.8)

When the required CV is smaller than vc, a non-myelinated axon should be

used; otherwise a myelinated axon should be used (Figure 2.2A). The implica-

tions of this result on the spectrum of the axon diameters depend on the ratio

of the cost per volume for a myelinated and a non-myelinated axon.

• K = k. When costs per volume of a myelinated and a non-myelinated

axon are equal, we recover Rushton’s result: axons with a diameter

greater than the critical diameter d0 are myelinated; below the critical

diameter they are non-myelinated.

• K > k. When cost per volume of a myelinated axon is greater than that

of a non-myelinated axon, the critical CV vc is above the intersection

point v0 (Figure 2.2B, 2.2C). In this case we expect an overlap between

the diameter distributions of myelinated and non-myelinated axons.

• K < k. When cost per volume of a myelinated axon is less than that

of a non-myelinated axon, the critical CV vc is below the intersection

point v0 (Figure 2.2D, 2.2E). In this case, we expect a gap in the diam-

eter spectrum that separates the non-myelinated and myelinated axon

distributions.
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2.3 Axon with Fixed Conduction Delay Cost

In the previous scenario, the conduction delay is specified a priori for an

axon. In an alternative scenario, we may assume that the conduction delay

only results in a finite penalty and the total cost linearly combines the cost

of volume, Va, and the cost of conduction delay, Ta, weighted by k and α,

respectively [14],

Ea = kVa + αTa, (2.9)

where the unit conduction delay cost α is now set a priori for a given axon

length. Then, we ask a slightly different question from that in the first scenario.

If conduction delay cost is proportional to α, should the axon be myelinated

or non-myelinated? To answer this question, we first determine the minimal

costs for a myelinated axon and a non-myelinated axon, respectively. We then

compare the two costs in order to choose the less costly axon.

By rewriting the cost as a function of diameter (see Methods), we show

that the volume term in the cost increases with diameter while the conduction

delay term decreases with diameter. By setting the derivative of the cost

function with respect to diameter to zero, we find that the optimal CV in a

myelinated axon is given by

vm = B2/3

(
2α

πK

)1/3

. (2.10)

The corresponding cost per length is given by

εm =
3α

2vm

(2.11)
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In a non-myelinated axon, the optimal CV and the minimal cost per length

are given by

vn = b4/5
( α

πk

)1/5

, (2.12)

εn =
5α

4vn

. (2.13)

Figure 2.3D shows the myelinated and non-myelinated axonal costs as a

function of the unit conduction delay cost α. They are equal at the critical

value α0. If α less that α0, a non-myelinated axon is preferred. Otherwise, a

myelinated axon is preferred.

However, unlike in the previous scenario, minimizing the axonal costs

with a finite conduction delay penalty predicts a gap in the CV spectrum

(Figure 2.3). This is because the CV of a myelinated axon is different from

that of a non-myelinated axon when the costs of the two types are the same

(Figure 2.3C). To see this, by setting Equation 2.11 and Equation 2.13 equal

to each other, we find that when the costs of a myelinated and non-myelinated

axon are the same

vm =
6

5
vn. (2.14)

The diameter spectrum still depends on the ratio K/k. Similar to the

previous scenario, we find that

• K = 5
3
k. Axons with a diameter greater than the critical diameter d0 are

myelinated; below the critical diameter, they are non-myelinated. We

note that although Rushton’s result [3] is recovered in this case, the gap

in the CV spectrum always exists.

• K > 5
3
k. The diameter distributions of non-myelinated and myelinated

11
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α. At the critical α0, the myelinated and non-myelinated axons have the same
cost, but the CVs are different. This induces a gap in the CV spectrum when
the cost of a non-myelinated axon becomes greater than that of a myelinated
axon.
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axons overlap (Figure 2.3A, 2.3B).

• K < 5
3
k. The diameter spectrum has a gap that separates non-myelinated

and myelinated axon distributions (Figure 2.4A, 2.4B).

2.4 Comparison with Experiments

Next, we compare our theory with the available experimental data from

the corpus callosum [15, 7, 16, 10]. This region of the brain offers several ad-

vantages. First, myelinated and non-myelinated axons coexist in it. Second,

corpus callosum axons have different diameters but similar lengths (between

100 and 130 mm in a human brain [16]). As a result, the relationship between

conduction delay and conduction velocity is uniform. Third, myelinated axons,

in general, have the disadvantage that they cannot make en passant synapses.

This disadvantage cannot play a role in the corpus callosum because there are

no synapses there. Unfortunately, we are unaware of simultaneous measure-

ments of conduction velocity and diameter for individual axons, making our

comparison somewhat indirect. Although measurements have been done in

studies of the peripheral nervous system dating back a long time [5, 17, 18],

precise measurements of myelinated and non-myelinated axons with very small

diameters (0.1 - 1 micron) is technically challenging.

Waxman and Swadlow [7, 15] found that, in the visual corpus callosum,

the diameter of non-myelinated axons varies between 0.08 micron and 0.6

micron, while the diameter of myelinated axons changes between 0.3 micron

and 1.58 micron. They observed an overlap between the diameter distributions

of non-myelinated axons and myelinated axons. The distribution of conduction
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velocity in the visual callosal axons (albeit different sample from the diameter

measurements) ranges from 0.3 m/s to 12.9 m/s.

If we assume a square-root relationship between conduction velocity and

the diameter of a non-myelinated axon, the smallest conduction velocity 0.3

m/s corresponds to the smallest diameter 0.08 micron. Then, the scaling

factor b in Equation 2.2 can be estimated as 1.06 m/s·µm−1/2. This result is

consistent with recent measurements on olfactory receptor neurons [19]. In

myelinated axons [2, 18], the scaling factor B in Equation 2.1 is between 4.5

and 6 m/s·µm−1. These scaling factors were used in Figures 2.2-2.4.

These figures show that a gap in the diameter spectrum can exist only be-

low 0.07 micron, a value too small for non-myelinated axons to exist. Indeed,

experimentally measured distributions of axon diameters exhibit an overlap

between the myelinated and the non-myelinated axons [10, 7], suggesting that

K > k. Using estimates of scaling factors, k = 1.06 m/s·µm−1/2 and K = 5

m/s·µm−1, we can also estimate the ratio K/k. If the overlap is approxi-

mately within the range of 0.2 - 0.7 micron, K/k = 16, according to the first

scenario and K/k = 17 according to the second scenario. The two estimates

are reasonably close to each other. We must emphasize the approximate na-

ture of these estimates because k and K are evaluated with a large degree of

uncertainty. For example, using values inferred by Rushton [3] for the largest

non-myelinated axon in the peripheral nerve, k = 2.09 m/s·µm−1/2 and K = 5

m/s·µm−1, both scenarios yield K/k = 4. Assuming that K can range between

4.5-6 m/s·µm−1, our estimate of K/k is between 3 and 25.

Prediction of a gap in the CV spectrum could not be verified using avail-

able experimental data. Measurements of CV for individual axons with thin
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diameter (0.1-1 micron ) can be very difficult. Since the first scenario does not

predict a gap, testing this prediction would help us distinguish between the

two scenarios.

2.5 Discussion

The square-root relation between non-myelinated axon diameter and con-

duction velocity has proven to be followed roughly in real nerves, but the

relationship does not exactly hold in different animals and different nerves.

Generally, we could assume a power law between diameter and CV by rewrit-

ing Equation 2.2 as

vn = bdθ
a, (2.15)

where θ < 1. Then, we check how Equation 2.15 affects our previous argu-

ments. In the first scenario, the critical CV vc in Equation 2.8 should be

modified as

vc =

(
K

k

) θ
2(1−θ)

(
b

B

) 1
1−θ

B, (2.16)

but the dependence of diameter spectrum on the ratio of unit volume cost of

myelinated and non-myelinated axons does not change. In the second scenario,

following the procedure discussed in the main text and the Methods, we found

that there is also a gap in the CV spectrum. However, Equation 2.14 changes

to

vm =
3vn

2 + θ
. (2.17)

In respect to diameter spectrum, we have
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• K = 2+θ
3θ

k. Axons with a diameter greater than the critical diameter d0

are myelinated; below the critical diameter they are non-myelinated. We

note that although Rushton’s result [3] is recovered in this case, the gap

in the CV spectrum always exists.

• K > 2+θ
3θ

k. The diameter distributions of non-myelinated and myelinated

axons overlap.

• K < 2+θ
3θ

k. The diameter distributions of non-myelinated and myelinated

axons are separated by a gap.

2.6 Methods

Given the length of an axon La, the unit cost of conduction delay α, the

total cost in 2.9 is given by

Ea = k
π

4
d2La + α

La

v
. (2.18)

By substituting Equations 2.1-2.2 into Equation 2.18, the cost per length

of a myelinated and a non-myelinated axon can be formulated respectively as:

εm = K
π

4
D2 +

α

BD
. (2.19)

εn = k
π

4
da

2 +
α

bda

. (2.20)

By setting ∂εm

∂D
= 0, ∂εn

∂da
= 0, we find the optimal diameter of the two
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types of axons to be

D =

(
2α

πKB

)1/3

, (2.21)

and da =
( α

πkb

)2/5

. (2.22)

Substituting Equations 2.21-2.22 into Equations 2.1-2.2, we obtain Equation

2.10 and Equation 2.12. Substituting Equations 2.21-2.22 into Equation 2.19-

2.20, we obtain Equation 2.11 and Equation 2.13. By setting Equation 2.11

and Equation 2.13 equal to each other, we find the critical α satisfies

α0
2/15 =

6

5

(
πK

2B2

)1/3 (
b4

πk

)1/5

. (2.23)

The axon diameters (i.e., Equations 2.21-2.22) become the same when

α2/15 =

(
2

πBK

)2/3

(πbk)4/5 . (2.24)

If α0 > α, or K/k > 5/3, there is an overlap in the diameter distributions of

myelinated and nonmyelinated axons. Otherwise there is a gap in the axon

diameter spectrum.
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Chapter 3

Segregation of the Brain into

Gray and White Matter: A

Design Minimizing Conduction

Delays

3.1 Background

A ubiquitous feature of the vertebrate brain is its segregation into white

and gray matter (http://www.brainmuseum.org). Gray matter contains neu-

ron somata, synapses, and local wiring, such as dendrites and mostly nonmyeli-

nated axons. White matter contains long-range, and in large brains mostly

myelinated, axons that implement global communication. What is the evo-

lutionary advantage of such segregation [20]? Networks with the same local

and global connectivity could be wired so that global and local connections
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are finely intermixed. Since such design is not observed, and invoking an evo-

lutionary accident as an explanation has agnostic flavor, we searched for an

explanation based on the optimization approach [12, 11, 21, 22, 13], which is

rooted in the evolutionary theory [23, 24, 25].

We started with the assumption that evolution “tinkered” with brain

design to maximize its functionality. Brain functionality must benefit from

higher synaptic connectivity because synaptic connections are central for in-

formation processing as well as learning and memory, which is thought to

manifest itself in synaptic modifications [26, 27]. However, increasing connec-

tivity requires adding wiring to the network, which comes at a cost. The cost

of wiring is due to metabolic energy required for maintenance and conduction

[28, 29, 30], guidance mechanisms in development [31], conduction time delays

and attenuation [32, 14], and wiring volume [13].

Two pioneering studies, by Ruppin et al. [33] and Murre and Sturdy

[34], have proposed that the segregation of white and gray matter could be

a consequence of minimizing the wiring volume. They modeled the brain

by a network consisting of local and global connections, which give rise to

gray and white matter correspondingly. Although wiring volume minimization

is an important factor in the evolution of brain design, their results remain

inconclusive because predictions of the volume minimization model for the

present problem are not robust and are difficult to compare with empirical

observations (see Discussion).

In this chapter, we adopted the model of connectivity introduced in Rup-

pin et al. [33] and Murre and Sturdy [34], including local and global connec-

tions, but minimize the conduction delay, i.e., the time that takes a signal
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(such as action potential and/or graded potential) to travel from one neuron’s

soma to another. To see that high connectivity and short conduction delay are

competing requirements, note that adding wiring to the network increases not

only its volume, but also the distance between neurons. In turn, this requires

longer wiring, which, for the same conduction velocity, introduces longer de-

lays. Longer delays are detrimental because fewer computational steps can

be performed within the time frame imposed on animals by the environment,

making the brain a less powerful computational machine [30].

We show that the competing requirements for high connectivity and short

conduction delay may lead naturally to the observed architecture of vertebrate

brain as seen in mammalian neocortex and bird telencephalon. As in any other

theoretical analysis we make several major assumptions. First, given that ex-

act connectivity is not known, we characterized the inter-neuronal connectivity

statistically by requiring a fixed number of connections per neuron. Second,

although conduction delays are known to differ between connections, we min-

imized the mean conduction delay. Finally, it is likely that, in the course of

evolution, minimization of conduction delay was accompanied by the increase

in connectivity. However, it is not known how to quantify the benefits of in-

creased connectivity in comparison with conduction delay increase. Therefore,

we adopted a mathematically sound approach of minimizing conduction delay

while keeping network connectivity fixed.

To obtain quantitative results, we used two analytical (non-numerical)

tools borrowed from theoretical physics. First, most of the derivations were

done using the scaling approach. In this approach, a relationship between vari-

ables takes the form of proportionality rather than equality. In other words,
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numerical factors of order one are ignored. One can manipulate and combine

such proportionality relationships and still get an estimate that is correct by

an order of magnitude. A long history of successful applications of the scal-

ing approach supports its validity. Second, we used a perturbation theory

approach, which is helpful when the exact analytical solution to a problem is

unavailable. In this approach, a simpler problem is solved exactly. Then the

exact solution is modified to fit the actual problem by taking advantage of the

fact that such modification is minor. Again, the long history of this approach

supports its validity as long as the difference between the exactly solvable and

the actual problem is characterized by a parameter that is much smaller than

one.

We present our theory in Results, which are organized into seven sections.

In Section 3.2, we consider competing requirements between small conduction

delays and high connectivity in local circuits. We show that local conduction

delay limits the size of the local network with all-to-all potential connectivity

to the size of the cortical column. Section 3.3 models full brain architecture

as a small-world network, which combines high local connectivity with small

conduction delay. We derive a simple estimate of conduction delay in global

connections as a function of the number of neurons. Section 3.4 considers

spatially integrating local and global connections. We argue that mixing local

and global connections substantially increase local conduction delay, while the

global conduction delay may be unaffected. In Section 3.5, by minimizing

local conduction delay, we derive a condition, under which white/gray matter

segregation reduces conduction time delays. Section 3.6 gives a necessary

condition for the segregated design to be optimal. An example of such design
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is given in Section 3.7. Finally, section 3.8 restates our results in terms of the

numbers of neurons, inter-neuronal connectivity, and axon diameter.

3.2 Conduction Delays Limit Size of a Highly

Connected Network

We begin by considering time delay in the local circuits of neocortex

because their mode of operation, thought to involve recurrent computations

[35, 36], seems most sensitive to the detrimental impact of time delay. We

derive a scaling relationship between local conduction delay and the number

of neurons that can have all-to-all potential connectivity. By assuming that

the tolerable delay is on the order of a millisecond, we show that the maximum

size of such network is close to that of the cortical column.

Local cortical circuits may be viewed as a network of n neurons with

all-to-all potential synaptic connectivity, meaning that axons and dendrites

of most neurons come close enough to form a synapse [37, 13, 38]. In the

following we do not distinguish between axons and dendrites in local circuits

and refer to them as local wires. The mean conduction delay t in local circuits is

given by the average path length between two connected neurons (via potential

synapses), `, divided by the conduction velocity, vn:

t =
`

vn

. (3.1)

Experimental measurements [6, 39] and theoretical arguments [3, 40] suggest

that conduction velocity, vn, scales sub-linearly with the diameter, d, of local
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wires (non-myelinated axons and dendrites):

vn = bdθ, (3.2)

where b is a constant coefficient and θ is a positive power smaller than one

(however see [41]). By combining Equations 3.1-3.2, we arrive at the expression

for the conduction delay:

t =
`

bdθ
. (3.3)

Equation 3.3 may give an impression that the conduction delay decreases

monotonically with wire diameter d. But this is not necessarily the case be-

cause ` can be a function of d. The following argument [32] shows that the

conduction delay, t, as a function of wire diameter, d, has a minimum (provided

0 < θ < 1), which defines the optimal wire diameter. Given the branching

structure of axons and dendrites and uniform distribution of neurons, ` can

be approximated by the linear size of the network [13], which can be easily

estimated in the two limiting cases. In the limit when the wire diameter ap-

proaches zero, all the non-wire components, such as synapses, are compressed

together and take up the space vacated by shrinking wires. Because the vol-

ume of the network approaches the volume of the non-wire components, which

is constant, the conduction delay diverges as 1/dθ according to Equation 3.3,

[32].

In the opposite limit when the wire diameter is large, the network volume

is determined mostly by the wiring [32]. As wires run in all directions, they

have to get longer as they get thicker and the linear size of the network grows

proportionally to the wire diameter. Then, according to Equation 3.3, the
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conduction delay increases as d1−θ. Therefore, conduction delay is minimized

by the optimal wire diameter, for which the non-wire occupies a fixed fraction

of the neuropil volume [32] (also see Methods 3.10.1). Then the optimal volume

of the network is of the same order as the non-wire volume. Assuming that

non-wire consists mostly of synaptic components, such as axonal boutons and

spine heads, the optimal network volume is of the same order as the total

synaptic volume. Therefore, the local network volume is given by:

`3 ∼ n2vs, (3.4)

where vs is the average synapse volume, n is the total number of neurons in the

local network. (In a network with all-to-all connectivity, n is also the number

of local connections made by a neuron via potential synapses). For the sake of

clarity, we ignore the fact that only a fraction (0.1-0.3) of potential synapses are

converted into actual [37]. Such numerical factors are ignored in the equations

of the main text, but can be included straightforwardly (see Methods 3.10.1).

One consequence of Equation 3.4 is that the optimal wire diameter is on the

same order of magnitude as the synaptic linear size, consistent with anatomical

observations [42]:

d ∼ vs
1/3. (3.5)

By using Equations 3.3-3.5 and assuming θ = 1/2, suggested by the cable

theory [3, 40], we find that the smallest possible mean conduction delay in

local networks is given by

t ∼ n2/3vs
1/6/b. (3.6)
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As the smallest possible conduction delay grows with the number of neurons

in the network, fixing conduction delay imposes a constraint on the maximum

size of the network. It seems reasonable to assume that the biggest tolerable

conduction delay is on the order of a millisecond, a time scale corresponding

to physiological events such as the extent of an action potential and the rise-

time of an excitatory postsynaptic potential [43]. This time scale could be

dictated by the metabolic costs [33]. If we approximate the synaptic volume

at a fraction of a cubic micrometer, and b ∼ 1 m/s·µm−1/2 [3, 15, 19], the

maximum number of neurons in the all-to-all connected network is on the order

of 104. This corresponds to roughly the size of a cortical column, which is then

the largest network that can combine all-to-all potential synaptic connectivity

with tolerable conduction delay.

3.3 Small-world Network Combines High Lo-

cal Connectivity with Small Conduction

Delay

Human neocortex contains about 1010 neurons; many more than could

possibly be wired in an all-to-all fashion with a physiologically tolerable con-

duction delay. In particular, substituting this neuron number into Equation

3.6, we find that delay would be on the order of seconds – clearly too slow.

Given that the brain is too large to combine high inter-connectivity with short

conduction delay [44, 45] how can it maintain high functionality? In this

section, we consider the architecture of the brain as a whole and show that
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much shorter global conduction delay can be achieved by sacrificing all-to-all

connectivity.

Anatomical evidence suggests that the brain maintains short conduction

delay by implementing sparse global inter-connectivity while preserving high

local inter-connectivity [42]. Such design resembles the small-world network

[46] as has been noticed by several authors [47, 48, 49, 50]. In a small-world

network, a high degree of clustering (the probability of a connection between

two neighbors of one neuron) is combined with a small network diameter (the

average number of synapses on the shortest path connecting any two neurons).

In neurobiological context this means a combination of high computational

power in local circuits with fast global communication [44, 45, 42, 47, 48, 49].

Thus it is not surprising that evolution adopted this architecture when the

size of the network made all-to-all connectivity impractical [51, 52, 44, 53, 47].

How fast could global connections be? Global conduction delay T in a

connection of length La with conduction velocity vm is given by

T =
La

S
. (3.7)

Here and below, upper-case letters are reserved for parameters of global con-

nections, while lower-case letters are for parameters of local connections. In big

brains, global axons are mostly myelinated as would be expected, given higher

demand on their conduction velocity see Chapter 1 and [3]. In myelinated

axons, conduction velocity scales linearly with diameter [5, 3], D:

vm = BD, (3.8)
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where B is a proportionality coefficient. Combining Equations 3.7-3.8, we find

that the conduction delay is given by

T =
La

BD
. (3.9)

Average length of global connections is given by

La ∼ V 1/3, (3.10)

where V is brain volume. In turn, brain volume can be estimated by adopting

the following model. Based on anatomical data [42], we assume that most

neurons send one global connection to another local network in the brain.

Initially, we ignore the volume occupied by local connections. We denote the

number of neurons in the brain as N , which can be much larger than the

number of local connections (via potential synapses) per neuron, n. Global

connections have length, La and diameter, D. Then the total volume of the

brain can be approximated as

V ∼ ND2La. (3.11)

Combining Equations 3.10-3.11, we find

La/D ∼
√

N. (3.12)
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Substituting this expression into Equation 3.9, we obtain

T ∼
√

N

B
. (3.13)

Equation 3.13 can be used to estimate conduction delay in global axons.

By substituting B ∼ 5 m/s·µm−1 [5, 18] and the number of neurons in human

neocortex, N ∼ 1010, we find that the delay is around 20 ms. Compared

with the several-second delay expected in a human brain if it had all-to-all

connectivity this is a significant improvement. For the mouse neocortex, by

substituting N ∼ 107, we find that the delay is around 0.6 ms. This is much

better than the 50 ms delay expected, according to Equation 3.6, if the mouse

cortex had all-to-all connectivity. As these estimates are based on the scaling

approach, they are reliable only up to an order of magnitude. However, they

demonstrate that sparse global connections can be much faster than a fully

connected network with comparable number of neurons.

3.4 Combining Local and Global Connections

Increases Conduction Delays

After considering conduction delays in local and global connections sepa-

rately, now we are in a position to analyze how they are combined in the brain.

Here we argue that the main difficulty in integration arises when introducing

global connections into local networks.

We adopt a model combining both local and global connections proposed

by Ruppin et al. [33] and Murre [34]. In this model, each neuron connects (via
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potential synapses in our case) with n local neurons and sends a global axon

to another arbitrarily chosen local network in the brain. For simplicity, we

neglect specificity and assume that local connections are made with nearest n

neurons located in a sphere of radius l centered on a given neuron, where ` is

given by Equation 3.4. Although local and global connections may be highly

specific [54, 55, 36, 56], this approximation is sufficient to understand brain

segregation into white and gray matter.

The effect of combining local and global connections on the conduction

delays can be analyzed in two steps. First, consider the effect of introducing

local connections into the network of global connections. This leads to the

swelling of the brain volume beyond that in Equation 3.11. Thus, global

axons must be longer and Equation 3.13 gives only the lower bound for global

conduction delay (see Methods 3.10.2). However the increase in the global

conduction delay caused by the swelling of network can be offset via speeding

up global axons by making them thicker, Equation 3.8. We show in Methods

3.10.2 that the global network can absorb local connections and preserve the

required global conduction delay.

Second, introduction of global connections into local circuits increases lo-

cal conduction delay and is impossible to compensate by making local connec-

tions thicker (see Methods 3.10.3). While conduction velocity depends linearly

on the global myelinated axon diameter, Equation 3.8, it scales sub-linearly

with the local wire diameter, Equation 3.2. Thus, the smallest possible mean

local conduction delay increases when more global connections are mixed with

local connections. To describe this quantitatively, we introduce the ratio of

global axon volume that is finely intermixed with local connections to the ini-
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tial unperturbed gray matter (i.e., total local circuits) volume, λ. When λ is

much smaller than one, we can argue that the initial minimum local conduc-

tion delay is only slightly affected by the penetration of global connections in

the gray matter. As shown in Methods 3.10.3, the increase in local conduction

delay, ∆t, because of intermixing global connections and local connections is

proportional to the ratio λ:

∆t

t
∼ λ, (3.14)

where t is conduction delay in unperturbed local circuits given by Equation

3.6. As before, numerical factors are neglected in the spirit of the scaling

estimate.

According to our original assumption, brain functionality is maximized

when conduction delay is minimized. According to Equation 3.14, the smallest

possible conduction delay in local circuits is achieved when λ = 0, i.e., when

global and local connections are fully segregated. But full segregation does not

lead to a feasible design because global connections originate and terminate on

neurons in local circuits. Thus, we must find a design that spatially integrates

local and global connections.

We note that minimization of local and global conduction delays are com-

peting desiderata, as can be illustrated by varying the global axon diameter,

D. Increasing D speeds up signal propagation along global connections and,

therefore, reduces global conduction delay. However, thicker global axons are

detrimental for local conduction delay because of an increase in λ, Equation

3.14. As the relative contributions to functionality of conduction delays in

local and global connections are unknown, we searched for the optimal design
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that minimizes local conduction delay as a function of D. Our analysis begins

with considering small values of D, i.e., λ � 1.

3.5 Comparison of the Homogeneous Design

(HD) and Designs with Gray and White

Matter Segregation

In order to determine the optimal design we need to compare local conduc-

tion delays in different designs combining gray and white matter. In general,

this problem is difficult to solve analytically. However, when global connec-

tions intermixed with the gray matter take less volume than local, i.e. λ � 1,

the perturbation theory approach allows us to compare local conduction de-

lays in homogeneous design (HD), in which gray matter and white matter are

finely intermixed, to designs in which gray and white matter are segregated.

In HD, local and global connections are finely and uniformly inter-mixed

(Figure 3.1). Then, according to Equation 3.14, the relative conduction delay

increase due to the penetration of global axons of diameter D in the gray

matter is given by

∆t

t
∼ λ ∼ ND2G1/3

G
, (3.15)

where N is the total number of neurons in the network. In this expression, we

used Equation 3.11 for the volume of global connections and the fact that the

average length of global axons is given by the linear size of the network, which,

for small λ is given by the linear size of gray matter, G1/3. We note that the
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G1/3

Figure 3.1: Homogeneous Design. In HD, local and global connections are uni-
formly and finely intermixed. Inset shows a typical local network containing
local axons (thin gray lines) and dendrites (gray and black tree-like struc-
tures), and global axons (thick, light-blue lines spanning the whole circle) that
perforate gray matter. When the volume of global axons is small, the linear
size of the network can be approximated as G1/3.

perturbation approach remains valid while the relative conduction increase in

HD is less than one, i.e., ND2 � G2/3.

Another contribution to the mean local conduction delay comes from

the boundary effect. Recall that the model requires each neuron in the gray

matter to establish connections with n nearest neighbors. If a neuron is far

from the boundary of the gray matter, these connections can be implemented

in a sphere of radius ` given by Equation 3.4 (Figure 3.2). However, neurons

within distance ` of the gray matter boundary cannot find n neighbors within

the sphere of the same size. Therefore, the radius of the local connections

sphere must be expanded to find n nearest neighbors (Figure 3.2).

Expanding the range of local connections for neurons near the boundary

increases average local conduction delay. The fraction of neurons that experi-

ence the boundary effect is proportional to the volume within distance ` from
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the boundary. As the boundary area in HD is given by G2/3, the fraction of

affected neurons is given by `G2/3/G ∼ `/G1/3, which is less than one because

the linear size of the gray matter G1/3 � `. Since the relative increase in

delay for each neuron in the affected volume is of order one, this expression

also gives a relative increase in the average local conduction delay. As this

boundary effect is determined by the external boundary, it is independent of

the design and can be ignored. However, the logic of this calculation will be

used in the following to estimate the effect of gray and white matter boundary

on local conduction delay.

Can segregation of gray and white matter reduce local conduction delay

in HD? In HD, global axons are straight and are finely intermixed with the

local connections. The contribution of global axons to local conduction delays

could be reduced by decreasing the length of global axonal segments within

the gray matter, according to Equation 3.14. Rather than connecting neurons

with a straight axon, a typical global axon would go towards the nearest white

matter tract (region occupied only by global axons) and travel in the white

matter until it is close to the target neuron. Then the axon would leave the

white matter and traverse the gray matter towards its target (Figure 2). Such

routing may increase the length of global axons but it would minimize impact

on local conduction delays.

To calculate the relative local delay increase in the segregated design we

estimate the relative volume of global axons in the gray matter, λ. We intro-

duce the mean distance between a neuron and the nearest white matter tract,

R, which also gives the linear size of gray matter modules (Figure 2). Then

the relative volume of non-fasciculated global axons inside the gray matter in
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the segregated design

λ ∼ ND2R/G. (3.16)

Comparing Equation 3.16 with Equation 3.15 one can see that segregation may

be advantageous to HD if R � G1/3. In other words, introducing a sufficient

number of white matter tracts in the gray matter may reduce the length of

non-fasciculated global axonal segments in the gray matter and hence, local

conduction delay.

Although segregation of gray and white matter may reduce local conduc-

tion delay, it has a disadvantage compared to HD in that it may induce a larger

boundary effect because of the white matter tracts inside the gray matter. This

effect is similar to the external boundary effect in HD but cannot be ignored

because it is different for different designs. If a neuron is far from the gray and

white matter interface, its local connections can be implemented in the sphere

of radius ` (Equation 3.4, Figure 3.2). If a neuron is close to the interface,

the white matter occupies part of the sphere, meaning that the local sphere

radius ` must be expanded so that a neuron can still find its n nearest neigh-

bors (Figure 3.2). Therefore, whether the segregated design is preferred or not

depends on whether the relative local conduction delay increase through the

boundary effect is much smaller than the local delay increase in HD, Equation

3.15.

To evaluate the mean local conduction delay increase through the bound-

ary effect in the segregated design, we need to specify the geometry of the

white matter tracts, as the boundary effect generally depends on the surface

area of the tracts. For a typical tract that spans the whole brain (i.e., has
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Figure 3.2: Boundary Effects in the Gray Matter. The red full circle illustrates
the local connection sphere of a neuron that does not experience the boundary
effect. Neurons near external boundary must inflate their local connection
sphere to implement the required local connectivity, as illustrated by thin
yellow semicircle. Neurons near white matter tracts penetrating gray matter
must also inflate their local connection sphere to implement the required local
connectivity, as illustrated by the thick red semicircle. The blue line with
arrowhead shows typical routing of global axons. R is the size of gray matter
modules, where global and local connections are finely intermixed.
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length L), we can relate its minimal surface area At to its cross-sectional area,

Φ:

At ∼
√

ΦL. (3.17)

In turn, the cross-sectional area of a tract depends on the global axon

diameter D, and one may conjecture that whether the segregated designs are

advantageous or not depends on D. Indeed, we can formulate the following

theorem, which is valid to the first order of ND2/G2/3, Equation 3.15, and

while our perturbation approach is valid (i.e., provided ND2 � G/`, as will

be shown later).

Theorem 1 In the regime ND2 � `2, local conduction delays in the optimal

segregated design and HD are equivalent. In the regime ND2 � `2, there is at

least one segregated design with local delays less than those in HD.

To prove the first part of the theorem, we calculate the local conduction

delay through the boundary effect in the segregated designs and compare it

with HD. The length of the global tract segment inside the local sphere is

`. The other two dimensions of global tracts are much less than ` (Figure

3.3A), as the minimal boundary effect is achieved by the minimal surface area

in Equation 3.17. Since the total cross-sectional area of the global tracts

is ND2 � `2, each tract’s cross-sectional area, Φi, is much less than the

cross-sectional area of the local connection sphere (Figure 3.3A). Inclusion

of such tract into a local sphere increases its radius to
√

`2 + Φi. Then, the

relative increase in the local conduction delay for neurons in that sphere is

(
√

`2 + Φi − `)/` ' Φi/`
2 � 1.

Now we add up conduction delays contributed by all the tracts to neurons
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in affected spheres. As the number of spheres affected by one tract is given

by L/`, the fraction of neurons experiencing the boundary effect induced by

one tract is given by ell2L/G and the relative local conduction delay increase

is given by (Φi/`
2)`2L/G ∼ Φi/G

2/3. The total relative increase in local delay

is the sum of the boundary effects induced by different tracts,

∆t/t ∼
∑

Φi/G
2/3 ∼ ND2/G2/3. (3.18)

Notice that even if there are multiple tracts within the local connection sphere

(i.e., the sphere radius can be larger than `), the above result is still correct.

By comparing local conduction delay increase for segregated designs,

Equation 3.18, with that for HD (Equation 3.15), one can see that they are

the same. Therefore, when ND2 � `2, the optimal segregated designs and

HD are equivalent to the first order of ND2/G2/3.

To prove the second part of the theorem (the ND2 � `2 regime), we

specify a segregated design with smaller local delays than that in HD. In such

design, global axons belong to M (M � 1) tracts with cross-sectional area

Φ � `2 each and length L ∼ G1/3. The distance between two tracts is much

larger than `. Then, the total affected neuropil volume through the boundary

effect is the product of the total surface area of the tracts, MΦ1/2G1/3, and

`. For a typical neuron within the affected volume, a fraction of its local

connection sphere with volume ∼ `3 is occupied by the white matter tract, as

illustrated in Figure 3.3B. To implement the required local connectivity, the

local sphere radius ` should expand by a numerical factor of order one.

Next, we add up relative local delay increase induced by all global tracts
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Figure 3.3: Boundary effect induced by white matter tracts with different
cross-sectional areas. A. In the case Φ � `2, two dimensions of the white
matter tracts (shown in white) can be much smaller than `. The red circle
illustrates local connection sphere of a neuron. B. In the case Φ � `2, neurons
within distance ` from the white matter tract experience the boundary effect.

affecting all the neurons in a volume, given by `MΦ1/2G1/3/G. As the total

cross-sectional area MΦ ∼ ND2, the relative local delay increase becomes

∆t

t
∼ ND2`

Φ1/2G2/3
. (3.19)

By comparing relative conduction delay in segregated design, Equation 3.19

with that in HD, Equation 3.15, one can see that because Φ � `2 as specified,

segregated design is advantageous in the regime ND2 � G2/3.

Although in the regime ND2 � G2/3 we do not have a closed form expres-

sion for the local conduction delay in HD, we can still show that it has longer

conduction delays than the segregated design. We show in Methods 3.10.3

that local conduction delay in HD is a monotonically increasing function of

λ, and hence a monotonically increasing function of ND2. Thus, the relative

delay increase in HD exceeds one when ND2 � G2/3. However, in the regime
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ND2 � G2/3, the relative local delay increase in a segregated design can still

be much smaller than one. To prove this, we note that in a segregated design,

the local conduction delay increase because of the non-fasciculated global ax-

ons intermixed with gray matter i.e.,λ ∼ ND2R/G (Equation 3.16), can be

much smaller than one, if R � G1/3.

In addition, the relative local delay increase through the boundary effect

can also be much smaller than one. To see this, we specify the tracts in such a

way that the total surface area of the white matter tracts is the surface area of

the gray matter G/R. Then, using analysis similar to that illustrated in Figure

3.3B, the relative local delay increase through the boundary effect is given by

`G
RG

, which can be much smaller than one if `/R � 1. We note that λ � 1

and R � ` could both be satisfied if ND2 � G/`. Thus, when ND2 � G2/3

and ND2 � G/`, there is at least one segregated design with local delay less

than that in HD.

Having considered both the ND2 � G2/3 regime and ND2 � G2/3

regime, we have proven the second part the theorem.

3.6 Optimality Condition for Segregated De-

signs

In the previous section, we showed that in the regime ND2 � `2 there is

at least one segregated design with local conduction delay shorter than that

in HD. However, we did not specify which design is the optimal one. In this

section, we give a necessary condition for a segregated design to be optimal in
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the regime ND2 � `2 and if ND2 � G/`.

As the advantage of segregation becomes apparent when the total cross-

section of global axons ND2 ∼ `2, it is natural to expect that a similar con-

dition defines the optimal gray matter module size R0, which minimizes local

conduction delays. In other words, the number of neurons in the gray matter

module is such that the total cross-sectional area of their global axons is given

by `2. As the number of neurons in the sphere of radius R0 is `2/D2 and the

number of neurons in the sphere of radius ` is n, we have

R0 ∼
(

`2

nD2

)1/3

`. (3.20)

Then, we can formulate the following theorem:

Theorem 2 In the regime ND2 � `2 and ND2 � G/`, the minimum local

conduction delay is achieved by the segregated design with the gray matter

module containing `2/D2 neurons.

To prove this theorem, we consider designs with gray matter module size

smaller and greater than R0 and show that they have a local conduction delay

greater than that of the design with module size R0.

In the case R0 � R, by applying Theorem 1 to any module, one can see

that converting that module from HD to segregated designs can reduce local

conduction delay. For example, fasciculating global axons within that module

into multiple tracts would reduce local conduction delay.

In the other case, if modules with size R0 contain only global axons from

the neurons inside the module, by applying Theorem 1 one can see that any
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optimal segregated designs containing modules with size R � R0 is equivalent

to designs containing modules with size R0.

Moreover, if the tracts inside the module of size R0 contain external

global axons (i.e., global axons that do not belong to the neurons inside the

module with size R0 and/or do not innervate the neurons inside the module),

converting segregated designs with module size R � R0 to designs with module

size R0 reduces the local conduction delay. This happens because merging all

the tracts within the module of size R0 into one reduces the boundary effect.

To see this, note that the minimal surface area of the big tract inside the

module with size R0 is on the order of (
∑

Φi)
1/2 R0 �

∑
Φi

1/2R0, where Φi is

the mean cross sectional area of a small tract containing external global axons

and
∑

Φi
1/2R0 is the total surface area of the smaller tracts inside the module

with size R0. Even if the tracts run in different directions, most of the tracts

can be merged together at the scale R0 because the typical length of a tract

is much greater than that and a small curvature would not affect the total

length by an order of magnitude.

Taken together, by considering the two possible cases, we have proven that

the minimum conduction delay in segregated designs is achieved with module

size R0. Such designs may be further classified by the relative dimensions of

the gray matter. The total boundary area between gray and white matter

(i.e., the total surface area of the white matter tracts), A, could satisfy either

A ∼ G/R0 or A � G/R0. As the local conduction delay through the boundary

effect grows with A, the latter design has the shorter delay. In the following,

we call segregated designs satisfying A � G/R0 the perforated design (PD).
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3.7 Branching Pipe Design – An Example of

Perforated Design

In the previous section, we have shown that in the optimal segregated

designs, the size of the module, in which global and local connections are

finely intermixed, is given by R0. However, Theorem 2 does not specify other

dimensions of the segregated design, such as the total surface area of the

white matter tracts. In this section, by considering a specific example, which

we name branching pipe design, we show that the condition A � G/R0 can

be satisfied in the regime where our perturbation approach is valid. In other

words, we prove that PD exists in the regime ND2 � G/`.

We specify the branching pipe design as follows (Figure 3.4). Global axons

belong to several cylindrical white matter pipes perforating the gray matter.

Higher-order branches split off lower-order pipes at regular intervals. Different

order branches have different lengths and different pipe diameter. The length

of the zeroth-order branches (i.e., the main pipes) is given by the linear size

of the brain. The length of k+1st order branches is given by the inter-pipe

distance among the kth order branches, forming a space filling structure. The

inter-pipe distance among the finest branches is given by R0 in Equation 3.20

(Figure 3.4).

Although we can calculate the total surface area of the branching pipes for

any given order k (as discussed in Methods 3.10.4), for simplicity we present the

main results from the branching pipe design in which only first-order branches

exist. We minimize the total surface area of such branching pipes and the

local conduction delay by searching for the optimal length and the diameter
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Figure 3.4: Branching pipe design. Schematic illustration of branching pipe
design with three orders of branches. The distance between kth order branches
determines the length of the k + 1st-order branches. The distance between
highest-order branches is given by R0.
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of the first-order branches and the optimal diameter of zeroth-order branches.

We find that the expression for the minimal total surface area of the first-

order branching pipes A depends on whether the total white matter volume is

greater than the total gray matter volume or not. In the regime `2 � ND2 �

G2/3, the gray matter occupies most of the brain volume, and A is calculated

in Methods 3.10.4:

A ∼
(

ND2

`2

)1/18

λ1/2 G

R0

. (3.21)

In turn, ` can be found by substituting G ∼ (N/n)`3 and optimal R ∼ R0

(Equation 3.20) into Equation 3.16:

λ ∼
(

nD2

`2

)2/3

. (3.22)

Then the minimal local conduction delay is given by

∆t/t ∼
(

ND2

`2

)1/18

λ ∼
( n

N

)2/3
(

ND2

`2

)13/18

, (3.23)

This dependence of ∆t/t on ND2 is plotted on log-log scale in Figure 3.5

(represented by thick blue line).

In the regime G2/3 � ND2 � G/`, white matter occupies most of the

volume and the specified segregated design has a different appearance: the

gray matter is confined to a thin sheet. Sheet thickness is given by the length

of highest-order branches. Then, the minimal surface area of the branching

pipes (as calculated in Methods 3.10.4) is given by

A ∼ λ1/3G/R0. (3.24)
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In this regime, the minimal local conduction delay is given by (Figure 3.5)

∆t/t ∼ λ5/6 ∼
(

nD2

`2

)5/9

. (3.25)

As λ � 1 is equivalent to ND2 � G/` (to see this, substitute G ∼

(N/n)`3 into ND2 � G/` and compare it with Equation 3.22), we show

that for such a branching pipe design, A � G/R0 in the regime where our

perturbation approach is valid. In other words, we verify the existence of PD

in the regime ND2 � G/`.

We note that when λ is approaching one, according to Equation 3.20 and

Equation 3.22, R0
2 ∼ `2 ∼ nD2, meaning that the total surface area of the

gray matter with size ` is taken up by the global axons. Therefore, when

λ → 1, we must have A ∼ G/R0 ∼ G/` ∼ ND2. This can also be seen from

the expressions for A in the branching pipe design, i.e., Equations 3.21 and

3.24. Moreover, λ ∼ 1 (i.e., ND2 ∼ G/`) is when our perturbation approach

to calculating the local conduction delay in PD breaks down (Figure 3.5).

When ND2 � G/`, i.e., λ � 1, we may consider clusters with discrete

spatial arrangement and each cluster has n neurons to implement local con-

nectivity. In this case, we can estimate the lower limit of the cluster size,

given by n1/2D, assuming that cluster volume is filled by tightly packed global

axons. Because of local connections, the actual cluster size must be even

greater. Alternatively, clusters may abut each other to form a sheet and the

sheet thickness could be much smaller than `. In this case, however, we cannot

determine the necessary conditions for the design to be optimal. Fortunately,

existing anatomical data suggest that actual brains are not even close to the
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Figure 3.5: Local conduction delay as a function of global axon diameter in
HD and PD. Local conduction delay is calculated for specific values ` = 0.5
mm, N = 108, and G = 103 mm3 and plotted in log-log coordinates. Thin red
line, local conduction delay in HD; thick blue line, local conduction delay in
PD. Delay in PD is calculated for the branching pipe design containing only
first-order branches.

regime where λ � 1, as will be shown later.

3.8 Phase Diagram of Optimal Designs

In previous sections we derived conditions under which various designs

are optimal in terms of minimizing conduction delays. Specifically, HD is

optimal if ND2 � `2 and PD is optimal if ND2 � `2 and λ � 1. Next, we

illustrate these results on a phase diagram (Figure 6) in terms of basic network

parameters, such as the local wire diameter d, the number of local connections
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(via potential synapses) per neuron n, global axon diameter D and the total

number of neurons in the brain N . To obtain the phase diagram, in the first

order perturbation theory, we substitute the expression for l, Eqs. (4)-(5),

into ND2 � `2, and find that PD is optimal when (N/n)1/2 D
n1/6d

� 1. In the

linear-log space of Figure 3.6, this expression corresponds to the regime above

the thick green line.

Next, we estimate where perturbation theory fails by setting λ to one.

By substituting Equations 3.4-3.5 into the expression for λ (Equation 3.22) we

find that λ can be rewritten as

λ ∼ D4/3

n2/9d4/3
. (3.26)

Then condition λ ∼ 1 is equivalent to n1/6d/D ∼ 1, corresponding to the thin

red line in Figure 6.

3.9 Discussion

We have shown that the segregation of the brain into gray and white

matter may be a natural consequence of minimizing conduction delay in a

highly inter-connected neuronal network. We related the optimal brain de-

sign to the basic parameters of the network such as the numbers of neurons

and connections between them, as well as wire diameters. Although we do

not know whether competing desiderata of short time delay and high inter-

connectivity were crucial factors driving evolution of vertebrate brains, our

theory makes testable predictions. Below, we compare these predictions with
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Figure 3.6: Phase diagram of optimal designs. In this phase diagram, we show
parameter regimes in which HD or PD are optimal in terms of the global axon
diameter D, local wire diameter d, total neuron number N , and the number
of local connections per neuron n. We assume n = 104 and d = 1 µm for
all empirical data points. Values of D in mammalian brains are from S. S.-H
Wang (personal communication) and [57], and values of N in the neocortex
are from [53]. Value of N in rat neostriatum is from [58]. For birds, we assume
N = 107.
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known anatomical facts.

3.9.1 Scaling Estimate of the Cortical Thickness

As fasciculated fibers are usually not observed in neocortical gray mat-

ter (according to Nissl and myelin stains), we identify cortical thickness with

gray matter module size, R. Our prediction for the optimal module size R0

(Equation 3.20) can be rewritten by using Equations 3.4-3.5 as

R0 ∼ n7/9d5/3/D2/3. (3.27)

Using n ∼ 104 [42, 36], d ∼ 1 µm [42] and D ∼ 1 µm[42] (also measured in the

corpus callosum of macaque monkey, Wang S.S.-H, personal communication),

we predict cortical thickness R0 ∼ 1 mm. This estimate agrees well with the

existing anatomical data [59, 60, 51] despite being derived using scaling. By

substituting these values into Equation 3.26, we find that λ is smaller than

one, justifying our perturbation theory approach.

Next, we apply our results to the allometric scaling relationship between

cortical thickness, R0, and brain volume, V . We assume that n and D both

increase with brain size [47, 48, 25] according to the following power laws:

n ∼ V 1/3 [53, 47, 48, 25], D ∼ V 1/6 (see Methods 3.10.5). Then, by using

Equation 3.27 and the constancy of the optimal local wire diameter d across

different species [42], we predict that R0 ∼ V 4/27. This prediction agrees

well with the empirically obtained power law relationship (with exponent 1/9)

between cortical thickness and brain volume [59, 60, 51, 61, 47]. Thus, our

theory explains why the cortical thickness changes little, while brain volume
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varies by several orders of magnitude between different species.

Two previous studies [61, 47] also discussed the nature of the scaling law

between cortical thickness and brain volume. One study relies on the assump-

tion that the number of neurons in a module of the neocortex is constant.

The volume of the module might be cubic R0. Because the neuronal density

may scale inversely as the cubic root of brain volume (see Methods 3.10.5),

R0 should scale as one-ninth of brain volume to ensure that the number of

neurons in a module is independent of brain volume. The other study relies

on the assumption that the number of such modules scales as two third of

the total gray matter volume. Hence, the volume of the module scales as one

third of the gray matter volume. As the total cortical gray matter volume

may scale linearly with the brain volume (see Methods 3.10.5), the size of the

module scales as one ninth of the brain volume. In this chapter, we take a

different approach by deriving the expression for the cortical thickness based

on the optimization principle. However, we obtain a scaling exponent close to

but not exactly equal to one ninth.

3.9.2 Comparison of the Cortical Structure and PD

Neocortex has a sheet-like appearance, and the total area of the gray and

white matter boundary is given by A ∼ G/R0, where G is the total gray matter

volume. According to our theory, such design is optimal when l becomes close

to one, which may be the case in big brains. Cortical convolutions may corre-

spond to the geometry expected in the pipe design. However, when λ � 1, our

theory predicts that the optimal design satisfies A � G/R0. This prediction
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does not seem to be consistent with empirical observations from small brains,

such as the smooth and sheet-like mouse cortex. It would be interesting to

see if different requirements on connectivity or other developmental and/or

functional constraints could resolve such discrepancy.

3.9.3 Comparison of Mammalian Neostriatum and PD

Neostriatum is named for its striated appearance (in nissl- and myelin-

stained material [62, 63]) caused by axons of neostriatal neurons gathering

into fiber fascicles and perforating the gray matter [64]. Areas with higher cell

density, or lower global fiber density (myelin-poor region [62, 63]) are called

striosomes or patches [65, 66, 67]. As such structure resembles PD, we identify

patch size with R0, Equation 3.27. In a typical rodent (rat or mouse) neos-

triatum, each principal neuron may locally contact thousands other neurons

[64]. Taking n ∼ 103, d ∼ 1 µm [42] and D ∼ 0.6 µm [57], we estimate that

R0 ∼ 300 µm. This estimate agrees well with existing anatomical data [68].

In addition, we may estimate the average axonal fascicle size. Given the total

number of neurons in the rat neostriatum is about 106 [58], we find that the

fascicle diameter is of the same order of `, approximately 100 µm, see Equation

3.58 in Methods 3.10.4. This estimate agrees well with fascicle size [63] (see

also, http://www.hms.harvard.edu/research/brain/atlas.html).

3.9.4 Comparison of the Avian Telencephalon and PD

Bird brains also exhibit segregation into gray and white matter and may

resemble PD. Distinct fiber fascicles have been identified to connect different
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brain regions (see http://avianbrain.org/boundaries.html), such as the connec-

tions from HVC to RA in songbirds, which are presumably myelinated axons

[69]. Interestingly, unlike the mammals that have a large cortex on the top of

other brain structures, the white matter fascicles of the bird could be scattered

throughout the whole forebrain. However, more experimental measurements

would be desirable, such as measuring large-scale myelin distribution in serial

sections of bird telecephalons.

3.9.5 Comparison of the Spinal Cord and PD

While the inner core of the spinal cord contains gray matter, the outer

shell contains the white matter consisting of long axons from spinal and cortical

neurons [64]. According to our theory, such organization is optimal if the inner

core diameter is on the same order of R0. To see if this is the case, note that

a principal (motor) neuron in the spinal cord have a very large arbor span

[70, 64] and may receive 105 − 106 potential connections. Given n ∼ 105,

d ∼ 1 µm and D ∼ 1 µm, we find R0 ∼ 8 mm according to Equation 3.27,

which is on the same order of the inner core diameter [64].

3.9.6 Related Work

Our work builds upon several insights from recent studies. In particular,

the idea of minimizing conduction delay has been used to explain why axons

and dendrites take certain fraction of the neuropil [32]. The main result in

that paper is further extended in this study to show that local conduction

delay has to increase after mixing gray and white matter (see Methods 3.10.1-

53



3.10.3). Also, in our model local circuits are approximated by the network

with all-to-all connectivity, which relies on the concept of potential synapses

[37]. Adopting this model allowed us to derive explicit results for the total

length of local connections (see Methods 3.10.1 and [13]).

We benefited from several previous studies of anatomical and functional

connectivity between different cortical areas. These studies helped conceptual-

ize network connectivity by revealing many interesting features of the network

[71, 72, 73, 74, 75, 76, 77], such as hierarchal [78], clustering [79] and small-

world properties [50, 80], which helped to generate new models to address

functional specialization and integration [81, 82, 83, 84, 85, 86].

We adopted (with the potential synapse caveat) the connectivity model

used by Ruppin et al. [33] and Murre and Sturdy (Murre and Sturdy 1995).

These authors applied the wiring optimization approach to explain the segre-

gation of white and gray matter in the brain. Given a network with local and

global connections, they searched for design having minimum total wiring vol-

ume. They attempted to show that segregated cortex-like design has smaller

volume than homogeneous structure by using different approaches.

Murre and Sturdy [34] used the scaling approach to calculate network

volume for several network connectivity patterns and layouts. We verified

their calculation of the interior (homogeneous) structure volume. However,

their calculation of the external (cortex-like) structure volume does not seem

to be self-consistent. The volume of axons in the external structure was calcu-

lated by using the expression that was unjustifiably adapted from the internal

structure calculation, thus undermining their conclusion.

Ruppin et al. [33] did not rely on scaling arguments and calculated the
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volume of brain structures given their geometric characteristics, under rea-

sonable assumptions of connectivity parameters. These authors showed that

segregation of the network into the inner core organization, which has an in-

ner core of gray matter surrounded by white matter, does not lead to volume

efficiency compared to homogeneous structure. They also showed that the

external sheet (cortex-like) structure has a smaller volume than the inner core

organization. However, this does not prove that the cortex-like structure has

a smaller volume than the homogeneous structure, a conclusion relying on a

fine balance of numerical factors.

We analyze the advantages of gray and white matter segregation from

the conduction delay perspective. Our results complement previous studies in

some respects but differ in many others. Here, we summarize several novel

points. First, we show that the segregation of white and gray matter is consis-

tent with minimizing conduction delay. Second, we determine the maximum

number of neurons in the all-to-all connected network with reasonable conduc-

tion delay and show that local cortical networks are close to that limit. Third,

we propose a possible explanation for the thickness of the neocortex, which

varies surprisingly little among mammalian species. Unlike Murre and Sturdy

[34] who suggested that cortical thickness is determined by the maximum den-

sity of incoming and outgoing global axons (condition indicated by the thin

red line in our Figure 3.6), we argue that in most brains it is the result of

minimizing local conduction delay. Fourth, our theory is based on the scaling

approach and yields a phase diagram of optimal designs for a wide range of

parameters. This allows us to apply the theory to several different structures

other than the neocortex. Derived scaling relationships can be tested by future
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experimental measurements.

3.9.7 Wiring Volume and Conduction Delay Minimiza-

tion

As features of brain design have been explained by minimizing both the

total volume and the conduction time delay, it is natural to wonder how these

approaches relate to each other. In general, the evolutionary cost is likely to

include both the volume and the time delay. Hopefully, such unified framework

will emerge eventually. In the meanwhile, since the exact form of the cost

function is not known, we sought to construct theories to explain features

of brain architecture based on the simplest possible assumptions. Next, we

proposed how time delay and volume can be related based on the current

theory.

In our model, conduction delay in local circuits is minimal when the

local wire diameter is at its optimal value, which corresponds to an optimum

gray matter volume. For details, see section one in the Results. The local

conduction delay increases when the local wire diameter d is smaller than

the optimum value. In this case, volume cost and conduction delay cost are

competing requirements. In the opposite case, when the local wire diameter

is thicker than the optimal value, invoking additional conduction delay cost is

accompanied by additional volume cost. Therefore, as long as the gray matter

volume is greater than its optimal volume, e.g., because of intermixing global

axons with gray matter, we may associate the additional conduction delay cost

with the volume cost, named the effective volume cost.
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However, in the white matter, the relationship between volume and delay

is different. Increasing white matter volume by making the global axon diame-

ter thicker does not increase the global conduction delay (see Methods 3.10.2).

Thus, the effective volume cost of white matter is just the tissue cost. From

this perspective, we propose that gray matter has a greater effective volume

cost than white matter. This may have several biological implications:

• Initial segments of axons originating from pyramidal neurons head

straight towards (and are perpendicular to) the boundary between the

white and gray matter. Once axons cross the white/gray matter border,

they change direction. Although such design may increase the length of

global axons, it largely reduces the effective volume cost of gray matter

because the volume of global axons in the gray matter is minimal.

• Another implication of differential effective volume cost in the gray and

white matter is that the global axons in gray matter may be thinner than

in white matter. Such variation in diameter could preserve short conduc-

tion delays in local and global connection. Of course, global axons cannot

be made infinitesimally small without sacrificing global conduction de-

lay. Further exploration of this effect would require more experimental

measurements of diameter changes at the white/gray matter border.

• In abutting topographically organized cortical sensory areas, the maps

are mirror reflections of each other relative to the border of the areas.

The purpose of such organization remains unclear because inter-area

connections in the white matter do not benefit from this organization.

In particular, placing two cortical areas next to each other (without
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mirror reflection) would not increase the length of inter-area connections

in the white matter. However, according to our theory, neurons close to

the border would be at a disadvantage because their local connections

would have to reach further to find appropriate targets. Mirror reflecting

maps relative to the inter-area border would eliminate a discontinuity in

a map and place neurons with similar receptive fields closer to each other.

Such arrangement would benefit intra-cortical connections.

3.10 Methods

3.10.1 Minimization of Conduction Delay in a Local

Network with Branching Axon and Dendrite De-

sign

Here we revisit the analysis from [32] using more specific information

about the network. Consider wiring up a local network of n neurons with

all-to-all potential connectivity. The mean conduction delay in local circuits

is given by

t =
`

s
∼ v1/3

bdθ
, (3.28)

where d is the local wire diameter and v1/3, the linear size of the local network,

approximates the average path length between two potentially connect two

neurons. We assume a sub-linear relationship between local wire diameter

and conduction velocity and b is a proportionality coefficient. From Equation

3.28, we want to find the minimal local conduction delay and the corresponding
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optimal local network volume. Therefore, we have to eliminate wire diameter

d from the previous equation and rewrite it as a function of local network

volume. To get this expression, we first notice that the total volume of the

local network is given by

v = nχd2 + vn, (3.29)

where vn is the non-wire volume, which is assumed to be a constant, and

χ is the total wire length per neuron. Second, for an all-to-all potentially

connected network, by applying the branching axon and dendrite design [13],

we also have

χ2d

v
∼ 1. (3.30)

This expression is derived as follows [13]. First, the local network volume, v,

is divided into cubes of volume, d3, i.e., into v/d3 voxels. Then, the number

of potential contacts between an axon and a dendrite is given by the number

of voxels that contain them both. Each axon occupies χ/d voxels, the same

number as a dendrite. The fraction of voxels containing the axon is χ/d
v/d3 , the

same as the fraction containing the dendrite. Then, the fraction of voxels

containing both the axon and the dendrite is the product of the two fractions,

χ2d4/v2. By multiplying this fraction by the total number of voxels, we find the

number of voxels containing axon and dendrite, χ2d/v. Then, the condition

for having at least one potential contact is given by Equation 3.30. Combining

Equation 3.29 with Equation 3.30 and excluding χ yields

d ∼ (v − vn)2/3

n2/3v1/3
. (3.31)
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By combining Equation 3.28 and Equation 3.31, we obtain

t ∼ n2θ/3v(1+θ)/3

b(v − vn)2θ/3
. (3.32)

In Equation 3.32, by setting the first derivative of v to zero, we find the optimal

network volume, or gray matter volume, should be

v ∼ 1− θ

1 + θ
vn. (3.33)

The minimal local conduction delay is given by

t ∼
(

1 + θ

1− θ

)(1+θ)/3 (
1− θ

2θ

)2θ/3

n2θ/3vn
(1−θ)/3/b. (3.34)

We assume that non-wire consists mostly of synaptic components, such

as axonal boutons and spine heads. In addition, only a fraction, f (0.1-0.3),

of potential synapses are actual synapses [37]. Therefore, the non-wire volume

can be estimated as

vn ∼ fn2vs, (3.35)

where vs is a single synapse volume. Assuming that θ = 0.5 from classical

cable theory and substituting it into Equations 3.34-3.35, we find the minimal

local conduction delay is proportional to

t ∼ f 1/6n2/3vs
1/6/b. (3.36)

For simplicity, after neglecting f , this expression is used in Equation 3.6 in

the main text. Furthermore, the optimal wire diameter can also be calculated
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by combining Equations 3.31, 3.33 and 3.35, which gives

d ∼ f 1/3vs
1/3. (3.37)

After neglecting f , this expression also appears in Equation 3.5 in the main

text.

3.10.2 Global Conduction Delay Can be Preserved Af-

ter Inter-mixing Gray and White Matter

After introducing the local connections (gray matter) into the global con-

nections, the total network volume swells and Equation 3.11 of the main text

changes to

V ∼ ND2La + G, (3.38)

where G is the total gray matter volume. After substituting La ∼ V 1/3,

D ∼ La

BT
(Equations 3.10 and 3.9 in the main text) into Equation 3.38, the

expression for V can be rewritten as

V ∼ G

1−N/(B2T 2)
. (3.39)

After substituting Equation 3.39 into D ∼ La

BT
∼ D ∼ V 1/3

BT
, we find the global

axon diameter is given by

D ∼ G1/3

[1−N/(B2T 2)]1/3BT
. (3.40)
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Therefore, as long as T > N1/2/B, we can find the corresponding global axon

diameter D.

3.10.3 Local Conduction Delay Increases After Inter-

mixing Gray and White Matter

Consider again the network described in Methods 3.10.1 with n neurons

and all-to-all potential connectivity. After white matter perforates the neu-

ropil, its volume inside gray matter can be expressed by vλ, where v is the

unperturbed optimal local gray matter volume given by Equation 3.33, and λ

is a positive dimensionless parameter. After such perturbation, the volume of

the local network (Equation 3.29) changes to

v′ = nχd2 + vn + vλ. (3.41)

Second, for an all-to-all potentially connected network, by applying the branch-

ing axon and dendrite design [13], Equation 3.30 changes to

χ2d/v′ ∼ 1. (3.42)

By combining Equations 3.28, 3.41, 3.42 and excluding χ and d, we can express

the local conduction delay as a function of the total local network volume v′:

t′ ∼ n2θ/3v′(1+θ)/3

b[v′ − vn − vλ]2θ/3
. (3.43)

Equation 3.43 shows that t′ is a monotonically increasing function of λ,
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and we recover the expression for t in Equation 3.32 as λ = 0. Moreover, when

λ � 1, the local network is still close to the unperturbed optimal state, i.e.,

v′ ' v, and we can expand Equation 3.43 to the first order of λ, which yields

t′ ∼ n2θ/3v(1+θ)/3

b(v − vn)2θ/3

(
1 +

2θ

3

vλ

v − vn

)
. (3.44)

After combining Equation 3.44 with Equations 3.32-3.33, we obtain the

expression for local conduction delay from the perturbation theory,

t′ ∼ t[1 + (1 + θ)λ/3], (3.45)

or

∆t/t ∼ (1 + θ)λ/3. (3.46)

After neglecting the numerical coefficient in the spirit of scaling estimate, the

last expression also appears in Equation 3.14 in the main text.

3.10.4 Local Conduction Delay and Surface Area in the

Branching Pipe Design

We will address stepwise the process by which we developed this design;

first, we present general considerations; second, we develop the first-order

branching design; and third, we describe the nonbranching pipes design.

First, to calculate the local conduction delay in the branching pipes, we-

consider a general model in which the white matter pipes have total J branch-

ing orders. A branch at order k (0 ≤ k ≤ J) has length Lk and pipe diameter
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Pk. The total number of kth order branches within the neuropil with linear

size Lk is given by Mk. Then, we can evaluate the relative local conduc-

tion delay increase through the boundary effect introduced by the kth order

branches. The affected neuropil volume through the boundary effect is given

by the product of total pipe surface area, MkPkLk, and distance `. This means

that the ratio of the affected volume to the total gray matter volume, or the

relative local conduction delay increase is given by

∆t/t ∼ `MkPk/Lk
2. (3.47)

However, Equation 3.47 does not tell what the total local conduction delay is,

as different branching orders can have different branching length and diameter.

To examine this further, we assume that the branching structure has a

space-filling feature. In particular, the length of the main branch L0 is given

by the linear size of the network, G1/3, and the length of k + 1st order branch

is given by the inter-pipe distance among the kth order branches. For the

terminal branches k = J , the inter-pipe distance between them is given by R0,

Equation 3.20.

If the length of the k+1st order branches is much larger than the diameter

of the kth order branches, i.e., Lk+1 � Pk, the inter-pipe distance between

kth order branches is given by Lk/Mk
1/2. Thus, we have

L2
k ∼ L2

k+1Mk, 0 ≤ k ≤ J, LJ+1 ∼ R0, (3.48)

where LJ+1 is the inter-pipe distance among the terminal branches, given by
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R0 (Equation 3.20). By denoting Nk as the number of neurons in the neuropil

with linear size Lk, Nk and Nk+1 also have the following relationship

Nk ∼ Nk+1M
3/2
k , 0 ≤ k ≤ J, NJ+1 ∼ `2/D2, (3.49)

according to Equation 3.48, where NJ+1 is the total neuron number in the

neuropil with linear size R0. In addition, as the pipes with length Lk contains

the global axons from the neurons inside the neuropil with linear size Lk, we

should also have

MkP
2
k ∼ NkD

2. (3.50)

By substituting Equations 3.48-3.50 into Equation 3.47, we find that

∆tk/t ∼
`N

1/2
J+1DM

1/4
k

L2
J+1

J∏
i=k+1

M
1/4
i

∼ λM
1/4
k

J∏
i=k+1

M
1/4
i

, ∆tJ/t ∼ λM
1/4
J , (3.51)

where `N
1/2
J+1D/L2

J+1 ∼ `2/R2
0 ∼ λ because according to Theorem 2, `2

is the total cross sectional area of the global axons inside the module with

size R0. Then, the total local conduction delay increase through the boundary

effect is given by

∆t/t ∼
J∑

k=0

∆tk/t ∼ λ

J−1∑
k=0

M
1/4
k

J∏
i=k+1

M
1/4
i

+ λM
1/4
J . (3.52)
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This expression can be minimized as a function of Mk. As a result, we obtain

M0 ∼ M2
1 . (3.53)

For J > 1, we also have

Mk ∼
1

16
M2

k+1, 1 ≤ k ≤ J − 1. (3.54)

Given the total number of neurons in the gray matter N = N0 and the

total branching orders J , by substituting Equations 3.53-3.54 into Equation

3.49, we can also obtain Mk explicitly. Next, by using Equations 3.48-3.50,

we can find the optimal branching length and diameter for different branching

orders.

Second, we consider a simple branching model in which only the first

order branches exist. In this case, J = 1 and by substituting Equation 3.53

into Equation 3.49, we obtain

M1 ∼
(

ND2

`2

)2/9

. (3.55)

By substituting Equations 3.55 and 3.53 into Equation 3.52, the relative

local conduction delay increase through the boundary effect is given by

∆t/t ∼
(

ND2

`2

)1/18

λ, (3.56)

where we neglect the numerical factor of the order of one in the spirit of scaling

estimate. The total local conduction delay increase is the sum of Equation
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3.56 and the expression for relative local conduction delay increase due to

intermixing non-fasiculated global axonal segments and gray matter, i.e., λ.

However, for the scaling estimate, the second term could be ignored and we

obtain Equation 3.23 in the main text.

Next, we calculate the total surface area of the branching pipes A. Ac-

cording to Equation 3.56 and ∆t/t ∼ `A/G, we then obtain the total surface

area of the branching pipes

A ∼
(

ND2

`2

)1/18

λ(R0/`)(G/R0) ∼
(

ND2

`2

)1/18

λ1/2(G/R0), (3.57)

where the last expression uses the relationship `2/R2
0 ∼ λ. This expression

also appears in Equation 3.21 in the main text.

In addition, we can also estimate the diameter and length of the first-

order branching pipes. P1 can be obtained by combining Equations 3.49-3.50,

which yields

P1 ∼ M
1/4
1 ` ∼

(
ND2

`2

)1/18

`. (3.58)

According to Equation 3.48, L1 is given by

L1 ∼ M
1/2
1 R0 ∼

(
ND2

`2

)1/9

R0. (3.59)

In the previous analysis, we assume that the length of the first order

branches is much larger than the diameter of the main branches, i.e., L1 �

P0, which allows us to use Equation 3.48. This assumption holds when the

total white matter volume is much smaller than the gray matter volume, i.e.,

ND2 � G2/3.
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In the opposite regime, however, L1 � P0 must hold, as the volume of the

main branching pipe is much larger than the gray matter volume surrounding

it. To see this, note that the volume of the main branching pipe is given by

P 2
0 L0, where L0 is the length of the main branch and the volume of the gray

matter surrounding an individual pipe is given by (P0 +L1)
2L0−P 2

0 L0. Then,

it is easy to check that if the gray matter volume is much larger than the

white matter pipe volume, we have L1 � P0, while in the opposite case we

have L1 � P0. Geometrically, when ND2 � G2/3, the gray matter resembles a

sheet and the sheet thickness is given by the length of the first order branches.

As the pipe design exhibits a different configuration when ND2 � G2/3,

we expect that the expressions for the total surface area of the pipes and the

minimal local conduction delay are different from what we derived above. In

this case, the total surface area of the main branching pipes is equal to the

surface area of the gray matter sheet G/L1, and the relative local conduction

delay increase through the boundary effect of the main branches is given by

∆t0/t ∼ `G
L1G

∼ `/L1.

To calculate the boundary effect induced by the terminal branches, we

assume that R0 � P1, where P1 is the diameter of the terminal branches.

This condition allows us to use Equations 3.48-3.50. Later, we will confirm

that R0 � P1 holds. Then, L1 ∼ M
1/2
1 R0, P1 ∼ M

1/4
1 `, and the relative delay

increase due to the terminal branches is given by ∆t1/t ∼ `P1M1/L1
2 ∼ `M

1/4
1 .

By adding up the local delay from the main and the first order branches, we

find that in the regime ND2 � G2/3, the total local conduction delay increase
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is given by

∆t

t
∼ ∆t0

t
+

∆t1
t
∼ `

M
1/2
1 R0

+ λM
1/4
1 ∼ λ1/2

M
1/2
1

+ λM
1/4
1 . (3.60)

Minimizing this expression as a function of M1, we obtain M1 ∼ λ−2/3, and

∆t/t ∼ λ5/6, as appeared in Equation 3.25.

Next, we calculate the total surface area of the pipes A. As ∆t/t ∼

`A/G ∼ λ5/6, we then obtain the total surface area of the branching pipes

A ∼ λ5/6(R0/`)(G/R0) ∼ λ1/3(G/R0), (3.61)

as appeared in Equation 3.24 in the main text.

Finally, to check whether R0 � P1, we note that P1 ∼ M
1/4
1 `. Then,

R0 � P1 requires R0 � λ−1/6`, as M1 ∼ λ−2/3. In turn, this requires λ � 1

as `/R0 ∼ λ1/2. Thus, R0 � P1 iff λ � 1. This condition should always be

satisfied for the PD.

Third, non-branching pipe model corresponds to J = 0. It does not

belong to the PD because A � G/R0 does not always hold in such design

when λ � 1, i.e., ND2 � G/`. To see this, we note that in the regime

ND2 � G2/3, A ∼ G/R0 must hold in the non-branching pipe model, because

the pipe diameter P0 is much larger than R0. In other words, when G/` �

ND2 � G2/3, the gray matter in the non-branching pipe model resembles a

sheet with thickness R0.
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3.10.5 Scaling of the Mammalian Neocortex

The theoretical framework developed in this chapter allows us to derive

several scaling laws for the neocortex. Provided our perturbation theory is

valid, the total neocortical volume G should be proportional to the total non-

wire volume. Assuming that non-wire contains mostly by synapses, we have

G ∼ Nnvs, (3.62)

First, from Equation 3.62, we find that the synaptic density, ρs, is a

constant, since ρs ∼ Nn/G ∼ 1/vs, where the average synapse volume vs is

assumed to be a constant in different cortical areas and across different species.

The prediction of constant synapse density is supported by experimental ob-

servations [87, 88, 42, 48], from a small number of taxa so far, and was used

as a starting point to derive scaling laws of the mammalian brains in several

theoretical papers [51, 47].

Second, we find the neuronal density ρ ∼ N/G ∼ N
Nnvs

∼ 1/n. Since

ρ scales inversely as the cubic root of total brain volume V across different

mammalian species [89, 48] (ρ ∼ V −1/3) and the cortical volume is loosely

proportional to the brain volume [90] (G ∼ V ), we find n ∼ V 1/3, N ∼ V 2/3,

and n ∼ N1/2. We note that Braintenberg [42, 53] has previously proposed

the square-root relationship between n and N . He assumed that the cerebral

cortex could be divided into N1/2 compartments and each compartment con-

tains N1/2 neurons. The local connectivity within a compartment is almost

all-to-all and every compartment is connected to every other one by a global

axon.
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Third, we find that the global axon diameter D scales as V 1/6. To see

this, we note that the total white matter volume W is given by ND2V 1/3,

where the average length of global axons in the white matter is assumed to

be proportional to the brain size, V 1/3. Since N ∼ V 2/3, and it has also been

reported that W ∼ V 4/3 across different mammalian species [91, 90, 22, 47, 92],

we find D ∼ V 1/6. This is consistent with recent measurements from corpus

collusum, which indicates that the average diameter of global axons scales

monotonically with the brain size [48]. Then, using n ∼ V 1/3, D ∼ V 1/6 and

Equation (27), we obtain R0 ∼ V 4/27, an expression from Discussion 3.9.1.

71



Chapter 4

A Cost-benefit Analysis of

Neuronal Morphology

4.1 background

Structure-function relationships have long played an important role in

biology. In addition to describing the bewildering variety of axonal and den-

dritic arbor shapes, Cajal has inferred that the function of dendrites and axons

was to conduct electrical signals from post-synaptic terminals to the integra-

tion site, which often is the cell body, and from the integration site to the

pre-synaptic terminals, respectively [1]. Moreover, he speculated qualitatively

that the structure of axons and dendrites minimizes their cost for given func-

tional constraints [1]. Yet, a quantitative theory of axonal and dendritic shape

and dimensions, which could provide valuable insights into to their function,

is still missing [93, 94, 95, 96].

In some cases, axonal dimensions can be trivially explained by the re-
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quirement of making specific connections [64]. In particular, global axons

projecting over long distances have to be long enough to reach from the pre-

synaptic cell body to the post-synaptic target(s). For example, an axon of

a pyramidal neuron projecting from one cortical area to another must be as

long as the distance between those areas. Even local axons sometimes make

specific connections, which determine their shape. For example, the shape of

the climbing fiber in the cerebellum must match the shape of the Purkinje

cell dendrites so that the axonal arbor can make numerous contacts with a

single dendrite. Although dendrites do not implement long-range projections

(gustatory neurons being an exception), they may have specific local targets.

For example, apical dendrites of particular pyramidal neurons arborize only in

certain cortical layers.

In many cases, however, the requirement to make specific connections

does not fully determine arbor dimensions. Consider, for example, local ax-

onal and basal dendritic arbors of two pyramidal neurons belonging to the

same cortical column (i.e., within a few hundred microns). Even without cor-

relations in the layout of axonal and dendritic branches [56], these overlapping

arbors make a potential synapse with each other (i.e., come within a spine

length of each other, allowing them to form an actual synapse by growing a

spine) [38, 97]. Then, what determines the topology and dimensions of den-

dritic and axonal branches of pyramidal neurons?

Another example is the Purkinje dendrite, which establishes potential

synapses with most parallel fibers (granule cell axons) that course through its

volume. There is no specificity in the topology and dimensions of the dendritic

arbor. Similarly, parallel fiber can contact any of the Purkinje dendrites it
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Figure 4.1: Schematic illustration of two designs of the neuropil micro-
architecture. Axons (blue) make potential synapses with a dendritic segment
(red) if they pass through a region within a spine length s of that segment.
We call this region a spine-reach zone and compare two designs with the same
number of potential synapses. In (A) spine-reach zone contains axons but ex-
cludes dendrites of other neurons. da - axon diameter, dd - dendritic diameter,
Ld - dendritic length. In (B), dendrites from various neurons interpenetrate
each other’s spine-reach zone. As a result, they add to the excluded volume
of axons and increase the total length of dendrites Ld.

trespasses. What determines the topology and dimensions of these axons and

dendrites?

Previously, we have shown that the total dendritic length is determined by

the requirement to form a given number of potential synapses [13]. All axons

that could potentially synapse on a dendrite must pass within a spine length

of a dendrite, Figure 4.1A. Because of volume exclusion by these axons, the

dendritic length is approximately given by the number of potential axons times

the axonal cross-sectional area divided by the spine length. Similar argument

applies to the total length of axons, which is given by the number of potential

dendritic targets times the dendrite cross-sectional area divided by the spine

length. Therefore, the total length of axons and dendrites is minimized for

given potential connectivity.
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Figure 4.2: Schematic illustration of four dendritic arbor designs. Dendrites
shown in red could be either planar or 2D projections of 3D arbors onto the
plane perpendicular to axons (blue). We consider four designs with the same
number of potential axonal targets. Dashed line indicates the spine-reach zone
of an arbor. s - spine length, dd - dendritic diameter, Rd - arbor span. (A)
Compact branching arbor. A compact arbor makes on average one potential
synapse with each axon (blue) passing through the arbor. The mesh size is
defined as the arbor span area divided by the total dendritic length. The mesh
size of a planar compact arbor is 2s+dd. The mesh size of a 3D compact arbor
differs from the 2D arbor by a numerical factor. (B) Compact non-branching
arbor. This arbor has the same total dendritic length and the same mesh size as
the compact branching arbor but greater path length. (C) Sparse branching
arbor. A sparse branching arbor cannot make potential synapse with each
axon passing through the arbor because the area of spine-reach zone is smaller
than arbor span area. In other words, the mesh size of a sparse arbor is much
larger than 2s + dd. (D) Dense branching arbor. A dense branching arbor
makes more than one potential synapses with each axon passing through the
arbor. The mesh size of a dense arbor is much smaller than 2s + dd.
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The above argument accounts for the total length of dendrites and axons

but does not explain why dendrites and axons branch. For example, consider

two alternative designs for a dendritic arbor, Figure 4.2A and Figure 4.2B

modified from [34]. For simplicity we assume that these arbors are planar and

they must receive inputs from a bundle of axons running perpendicular to the

dendritic plane (like parallel fibers in the cerebellum). Both arbors have the

same total length and the same number of potential axons. Therefore, their

total wire length cost and potential connectivity are the same. Then, why has

not the arbor in Figure 4.2B been observed?

One possible answer is that branching plays a computational role in ax-

ons [98, 99, 100, 101], and, in particular, dendrites [40, 102, 103, 104]. For

example, specific interactions between excitatory and inhibitory inputs on dif-

ferent dendritic branches and their combinations may be used to construct

logical gates [105]. Having a large number of dendritic branches may also in-

crease the information storage capacity of a neuron, presumably due to the

nonlinear integration of synaptic inputs from different branching units [106].

However, a quantitative theory of dendritic branching based on computational

requirements does not exist.

In this chapter, we sought to explain the branching structure of dendrites

by optimizing not just the total wiring length, but a combination of the to-

tal wiring volume and the cost of signal transmission between the soma and

synapses [107, 108]. Previously, a combination of volume and signal transmis-

sion cost has been used to explain other features of brain design [32, 14, 109].

We quantify the cost of signal transmission by signal attenuation along a den-

drite. Optimization is performed under the neuronal connectivity constraint,
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by fixing the potential convergence factor, which is the number of neurons

making potential synapses with a dendrite.

The chapter is organized as follows. First, we argue that a compact

and branching dendrite minimizes a combination of volume and attenuation

cost. Second, we show that the optimal dendrite is planar, perpendicular to

the orientation of axons, and does not admit other dendrites within its spine

length. This design is adopted by the Purkinje dendrites in the cerebellum.

Third, we point out that sparseness of cortical and hippocampal dendrites

cannot be explained solely by minimizing cost.

4.2 Quantitative Expression for the Cost of

Dendrites

Optimization-based explanation of dendritic shape requires a quantita-

tive expression for the cost of dendrites. We adopt the cost function, used

previously for long-range axons [14], which is the sum of dendritic volume, Vd,

and signal attenuation, Td,

Ed = Vd + αTd, (4.1)

where α is an unknown constant, which will be determined later by comparing

our predictions with anatomical data (see Discussion). In this section, we

recap the argument that led to this cost function and express volume and

attenuation in terms of dendritic dimensions. The resulting expression will be

minimized in subsequent sections.
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Based on previous experimental and theoretical results suggesting that

neuropil volume is a costly resource [13, 110, 34, 111, 112, 12, 11, 113, 114, 32],

we use volume to quantify the cost of dendrites. If we model a dendritic

segment as a solid cylinder, the volume of a dendrite can be straightforwardly

expressed in terms of its total length, Ld, and its mean diameter, dd,

Vd =
π

4
Ldd

2
d. (4.2)

Here and below, if we calculate a quantity exactly in a certain model by in-

cluding all the numerical factors, we use the equal sign (e.g., A = B). If we

ignore all the numerical coefficients, we use the symbol ∼ (e.g., A ∼ B).

Although the volume of dendrites can be minimized by making dendrites

thinner, this would negatively impact their function: thinner dendrites attenu-

ate synaptic signals more because of greater leakage current. The loss of signal

strength is captured by the attenuation cost Td proportional to the fractional

attenuation of the signal.

To derive the expression for the attenuation cost Td, first, we assume that

the mean path length from a synapse to the soma, `, is much smaller than

the space constant ξ. This condition is probably satisfied for local dendritic

arbors such as Purkinje dendrites [115] and basal pyramidal dendrites [116,

117]. In this case, the fractional attenuation of the voltage is given by `/ξ.

Second, by taking into account the fact that a dendrite integrates many inputs,

we posit that the attenuation cost is the sum of fractional attenuation from

different synapses. Assuming that the number of actual synapses converging
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on a dendrite is proportional to the potential convergence factor Cp, we have

Td ∼ Cp
`

bdθ
d

, (4.3)

where we substitute the relation ξ = bdθ
d and b is a constant coefficient. In the

following, we assume θ = 0.5 as used in deriving the cable equation [118].

Although active conductances, which are present along a dendrite, could

compensate for passive attenuation, they must invoke metabolic costs of their

own. To the first approximation, these costs are commensurate with the pas-

sive attenuation.

Combining Equations 4.2 and 4.3 we can re-write Equation 4.1 as:

Ed ∼ d2
dLd + αCp

`

bd
1/2
d

. (4.4)

4.3 Minimization of Volume and Attenuation

Yields Compact Centripetal Dendrite

According to Equation 4.4, for given convergence, the cost of dendrites

depends on three variables: mean path length, `, total length of dendrites,

Ld, and mean dendritic diameter, dd. These variables are not independent.

In this section, by sequentially re-expressing these variables, we reduce the

cost expression to the function of a single variable, dendritic diameter. This

function will be minimized to find the optimal dendritic diameter.

First, according to Equation 4.4, to minimize the cost, the typical path

should be as short as possible. But the mean path length ` cannot be smaller
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than the linear size or span of the arbor, Rd, at least by order of magnitude:

` ∼ Rd. (4.5)

To minimize the path length, and satisfy Equation 4.5, each segment of the

dendrite must be directed towards the integration site, which is often the cell

body. We call such arbor design centripetal. If the total dendritic length is

greater than the dendritic arbor span, the centripetal arbor must branch, Fig-

ure 2A. Therefore, branching of dendrites is a trivial consequence of minimizing

mean path length.

Using Equation 4.5, we can rewrite the cost of a centripetal dendrite as

a function of arbor size Rd:

Ed ∼ d2
dLd + αCp

Rd

bd
1/2
d

. (4.6)

The cost can be minimized by reducing arbor size, Rd, under constraint of

the potential convergence factor Cp. To satisfy this constraint, an arbor must

span an area containing Cp axons. If dendritic arbor is planar and axons run

orthogonally to it, the minimum arbor span area

πR2
d =

π

4
Cd2

a + ddLd, (4.7)

where π/4Cpd
2
a is the total axonal cross-sectional area and ddLd is the area

occupied by the dendritic branches themselves. Equation 4.7 still holds if

dendritic arbor is not planar but 3D, provided that numerical factors of order

one are ignored.
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By substituting Equation 4.7 into Equation 4.6, we find

Ed ∼ d2
dLd + αCp

(Cpd
2
a + ddLd)

1/2

bd
1/2
d

. (4.8)

Note that reducing Ld minimizes cost of dendrites. The minimum dendritic

length is again determined by the potential connectivity constraint: Cp axons

must fit within a spine length s of a dendrite, which we call the spine-reach

zone, Figure 4.1A. Then, for a planar dendritic arbor, we set the area of the

spine reach zone equal to the total axonal cross-section [13] and find that the

minimum total dendritic length is:

Ld =
π

4
Cp

d2
a

2s
, (4.9)

where factor 2 reflects the fact that the spine reach zone exists on both sides of

a dendrite. Equation 4.9 also holds for a 3D dendritic arbor provided numerical

factors of order one are ignored.

Next, we calculate the arbor mesh size – a parameter that quantifies the

sparseness of an arbor - by dividing arbor area by the total length, R2
d/L. For

the optimal arbor, by combining Equations 4.7 and 4.9, we find

πR2
d

Ld

= 2s + dd. (4.10)

Equation 4.10 also holds for a 3D dendrite provided that numerical factors of

order one are ignored.We call a planar or 3D arbor satisfying Equation 4.10

compact, Figure 4.2A. One property of a compact arbor is that it forms on

average one potential synapse with each axon passing through the arbor.
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Compact branching arbor is less costly than other branching arbors with

the same potential convergence. Consider a sparse arbor, the mesh size in

which is much larger than 2s + dd, Figure 4.2C, and which does not form

potential synapses with every axon passing through the arbor, Figure 4.2C. A

compact arbor is less costly because it has smaller span than a sparse branching

arbor.

Compact branching arbor is also advantageous to a dense branching ar-

bor, in which the arbor mesh size is much smaller than 2s + dd, Figure 4.2D.

A dense branching arbor can form more than one potential synapse with each

axon passing through the arbor, Figure 4.2D. Given the same number of ax-

ons forming potential synapses with the dendrite, such design makes the total

dendritic length greater than that in the compact arbor.

Finally, we express the cost of dendrites in terms of dendritic diameter.

By substituting Equation 4.9 into Equation 4.7, we find that the minimum

arbor size is given by

Rd =
1

2
C1/2

p da(1 +
dd

2s
)1/2. (4.11)

By substituting Equations 4.11 and 4.9 into Equation 4.6, Ed is given by

Ed ∼
Cpd

2
ad

2
d

s
+ α

C
3/2
p da

bs1/2
(1 + s/dd)

1/2. (4.12)

Now we can search for the optimal dendritic diameter that minimizes the

cost of a dendrite, Ed. According to Equation 4.12, the volume and attenua-

tion have opposite dependence on the dendritic diameter and the competition

between them determines the optimal diameter. By setting ∂Ed/∂dd = 0, we
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Figure 4.3: Optimal dendritic diameter as a function of the potential conver-
gence factor. dendritic diameter is calculated for specific values of parameters
(da = 0.2 µm [119], s = 1.4 µm [120], and α/b = 3×10−3 µm2.5) and is plotted
in the log-log coordinates.

find that the optimal dendritic diameter satisfies the following relationship

d6
d + sd5

d ∼ (α/b)2s3Cp/d
2
a. (4.13)

According to Equation 4.13, we plot numerically the optimal dendritic diam-

eter as a function of the convergence factor Cp in Figure 4.3. Note that the

explicit expression for dd can be easily obtained in two limiting cases: dd � s

and dd � s. When dd � s, dd ∼ [αs/(bda)]
2/5 C

1/5
p . In the opposite limit,

dd ∼
[
αs3/2/(bda)

]1/3
C

1/6
p .

So far, we have argued that the cost of planar and 3D arbors was the

same up to numerical factors of order one. When these numerical factors are

included, a planar dendrite has a smaller cost than a 3D dendrite. To see this,
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note that a planar arbor can be viewed as a 2D projection of the 3D arbor

onto the plane orthogonal to the axons and the projection is always shorter

than the original. Then, both the minimum path length, `, and the minimum

total dendritic length, Ld, in a planar arbor are shorter than those in a 3D

arbor. According to Equation 4.4, the cost of dendrites increases with ` and

Ld for any given dd, and a planar arbor is advantageous to a non-planar arbor.

Moreover, the minimum Ld is achieved by a spatial organization of the

neuropil, in which adjacent dendrites from different neurons are excluded from

each other’s spine-reach zone, Figure 4.1A. If dendrites penetrate each other’s

spine-reach zones, Figure 4.1B, they would add to the excluded volume of

axons, Equation 4.9, and increase the total dendritic length.

4.4 Discussion

In this chapter, we sought to understand the branching structure of the neurons

as a trade off between functional benefits and physical costs. For a given

potential connectivity of the neuronal network, we minimized the combination

of volume and attenuation cost in dendrites. Next, we compare our predictions

with the experimental data.

4.4.1 Purkinje Dendritic Arbor is Compact, Centripe-

tal and Planar

In order to prove that Purkinje dendritic arbors are compact, we show that

the dendrite forms on average one potential synapse with each axon passing
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Figure 4.4: Purkinje dendrites are compact and centripetal. (A) Arbor mesh
size of Purkinje dendrites. The red line is the predicted mesh size for a com-
pact arbor, where s = 1.4 µm [120], dd = 1.5 µm [120] are used. To measure
the mesh size, first, we project the cells onto the plane perpendicular to the
parallel fibers (sagittal plane). Second, we calculate the mean square radius of

the arbor 〈R2
d〉 =

(
N∑

i=1

R2
i

)
/N , which is defined as the mean square distance

from the dendritic segment to the centroid of the dendrite. Third, centered on
a dendritic segment whose distance from the centroid of the arbor is less than√
〈R2

d〉, we draw circles and calculate the mesh size by dividing the area of the
circle by the total dendritic length within the circle. Fourth, we plot the mean
mesh size, which is averaged over different centers of the circles and different
cells, as a function of the area of the circle r2 normalized by the mean square
radius 〈R2

d〉. (B) Ratio of the path length a dendritic segment to the soma,
`, to the euclidian distance from the dendritic segment to the soma, Rd. The
ratio is close to one for a given path length. (C) The probability distribution
of the orientation angle θ between the vector of the signal flow along a den-
dritic segment and the vector pointing centripetally from the segment to the
soma. 70 percent of the angles are less than ninety degree. The above anal-
ysis is performed on ten digitally reconstructed Purkinje dendrites [121, 115]
(publicly available from http://neuromorpho.org). All error bars are standard
deviations.
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through the arbor. According to Equation 4.10, this requirement is achieved

when the mesh size of a planar arbor is 2s + dd.

We measure the mesh size of different parts of a dendrite by calculating

the area of a local tree divided by its total length. In Figure 4.4A, we plot

the mesh size as a function of the area of a local tree, where error bars are

standard deviations (see figure captions for detailed explanation). The mesh

size is reasonably close to the theoretical prediction (red line in Figure 4.4A),

where we use s = 1.4 µm [120], dd = 1.5 µm [120]. Therefore, our measurement

confirms that Purkinje dendrites are compact.

To demonstrate that Purkinje dendrites are centripetal, first, we calculate

the ratio of the path length from a dendritic segment to the soma, `, to the

euclidian distance from the dendritic segment to the soma Rd. Data presented

in Figure 4.4B show that this ratio is close to one. Second, we plot the prob-

ability distribution of the orientation angle θ between the vector of the signal

flow along a dendritic segment and the vector pointing centripetally from the

dendritic segment to the soma (Figure 4.4C). We find that 70 percent of the

angles are less than 90 degree. Taken together, these measurements suggest

that the Purkinje dendrites are centripetal.

Moreover, we suggest that the characteristic planar shape of Purkinje

dendrites can be explained as a result of minimizing the cost of dendrites. It

would be interesting to see if the same principle also applies to other types of

planar dendrites in the brain.

According to Figure 4.3 and by using the relationship L ∼ Cp in Equation

4.9, we also predict that the mean dendritic diameter increases with the total

dendritic length. We hope that this prediction can be tested quantitatively
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for Purkinje dendrites.

We can determine the unknown constant α in the cost function, Equation

4.1, by substituting the anatomical and physiological parameters of Purkinje

dendrites into the expression for dd in Equation 4.13. Using Cp = 105 [120],

s = 1.4 µm [120], dd = 1.5 µm [120] da = 0.2 µm [119] and b =
√

Rm

2Ri
=

2 × 103 µm1/2 [115] (Rm is the specific membrane resistance and Ri is the

intracellular resistitivity), we find α ∼ 1 µm3.

4.4.2 Micro-architecture of the Cerebellum Molecular

Layer

According to the Results section, to minimize the cost of dendrites, adjacent

dendrites should be mutually exclusive, Figure 4.1A. We verify this prediction

by estimating whether interval η between potential synapses along a parallel

fiber in the molecular layer satisfies η = 2s + dd. We note that a similar

calculation has been performed previously by Napper and Harvey [119].

The interval between potential synapses along a parallel fiber η = La/Dp,

where La is the length of a parallel fiber and Dp is the potential divergence. Dp

can be calculated as follows. Because Purkinje dendrites are compact, an axon

can potentially connect with all the dendrites in the volume Lawh, where w is

the width of the dendritic arbor and h is the height of the arbor. Therefore,

we have

Dp = ρLawh, (4.14)

where ρ is the neuronal density. Because Purkinje cell bodies are arranged in

monotone layer, we may rewrite Equation 4.14 as a function of the neuronal
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density per unit area σ,

Dp = σLaw. (4.15)

As a result, the interval of potential synapses on an axon η is given by

η = La/Dp =
1

σw
. (4.16)

By substituting the values from the rat cerebellum [119] σ = 1018 mm−2,

w = 250 µm, we obtain η = 4 µm. Recalling that s = 1.4 µm [120], dd =

1.5 µm [120], we find that the relation η = 2s + dd is satisfied and adjacent

Purkinje dendrites are on average excluded from each other’s spine-reach zone.

We hope that in the future this calculation will be verified directly by electron

microscopic reconstructions.

4.4.3 Arbor Shape in the Neocortex and Hippocampus

According to the theory, the optimal dendritic shape is a compact arbor.

By substituting dd = 0.9 µm [42], s = 2 µm [42] into Equation 4.10 we

find the mesh size of a pyramidal neuron dendrite should be several microns.

However, in reality, pyramidal dendrites are much sparser [42]: the mesh size

∼ 20− 30 µm for cortical layer II-III basal dendrites of pyramidal cells [122].

Therefore, the sparseness of cortical pyramidal dendrites cannot be understood

within the current framework.

How can such a discrepancy between the theory and the experiments be

resolved? This question will be answered in the next chapter based on the

hypothesis dendritic arbors not only minimize their cost but also maximize
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the number of achievable connectivity patterns. We will show that sparse

dendritic arbors can achieve more connectivity patterns than compact arbors.

We postulate that the sparseness of pyramidal dendrites may be a consequence

of great structual plasticity in the neocortex.
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Chapter 5

A Statistical Theory of

Dendritic Morphology

5.1 background

In his seminal work [1], Santiago Ramón y Cajal not only described the

bewildering variety of neuronal shapes, but also attempted to relate neuronal

structure and function. He proposed the law of polarization, stating that the

function of dendrites is to conduct signals from synapses to the soma, while the

function of axons is to conduct signals from the soma to synapses. Although

some exceptions to this are now known, notably the dendritic backpropagation,

the law mostly passes the test of time. Cajal also proposed that neuronal shape

maximizes functionality while minimizing the use of available resources, such

as space time and energy. However, because of a lack of anatomical data

and quantitative formulation, the hypothesis has been difficult to test until

recently.
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In the last two decades, proliferation of reliable staining methods and

improvements in imaging and computing infrastructures have led to the growth

of neuronal shape datasets accompanied by various attempts to quantify arbor

shape. One important tool in characterizing arbor shape has been the Sholl

plot, which yields the number of branches intersecting spheres with incremental

radii [123, 107, 124]. Another important observation was the statistical scaling

of arbor shape [125, 126, 127, 128, 129, 130, 131].

In this chapter, by analyzing several datasets of neuronal shape, we con-

firm and expand the observation of scaling in dendritic arbors. We demonstrate

that the Sholl plot can be fitted by an analytic function which is approximated

by a power law at small distances. This implies that a fragment of an arbor, in

a statistical sense, looks like a scaled down version of the whole arbor. In other

words, the arbor is self-similar. We also report scaling of the arbor span with

the total dendritic length over a wide range of arbor sizes. Most importantly,

we show that the two observations of scaling are related, implying that arbors

are not only self-similar but are built according to common rules. In addition,

we measure the tortuosity and the branching of the arbors.

What is the theoretical explanation of scaling and self-similarity? As ar-

bor shape is an outcome of neural development, developmental models could

provide such an explanation [132, 133, 134, 135]. However, because of the

complexity of development, a systematic theoretical framework explaining neu-

ronal arbor shape does not exist. Here we pursue a different approach, in which

brain structure is explained as a result of evolutionary fitness optimization that

maximizes brain functionality, while minimizing costs associated with building

and maintenance.
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Much progress in explaining neuron structure based on fitness optimiza-

tion has been made by minimizing cost, rather than maximizing functionality.

This is because costs have a clear physical origin and are easier to quantify.

In particular, building on the qualitative suggestions of Cajal that neuronal

shape minimizes costs, we have been able to explain many brain structures as

discussed in the previous chapters.

In this chapter, we propose a theory for the shape of dendritic arbors by

quantifying not only their costs but also their functionality. As the princi-

pal role of dendrites is to make synaptic connections with axons, we quantify

their functionality by the number of achievable connectivity patterns. Thus we

maximize the connectivity repertoire while minimizing cost. We can, with all

significant limitations in mind, make some calculations based on this principle

and arrive at the results which are imperfect in the sense that critical expo-

nents are not quite in agreement with the data, but the very fact of scaling is

definitely recovered.

Maximization of the connectivity repertoire and minimization of the cost

is closely related to the maximum information storage capacity approach that

can explain the properties of cortical synapses [136]. Here, we take this ap-

proach to the next logical step by considering all the possible trajectories of

dendritic branches through the neuropil. We calculate the total number of

available connectivity patterns by taking advantage of powerful methods from

statistical physics developed for branching polymers [137, 138].
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Figure 5.1: Generalized Sholl plot of 3D pyramidal basal dendritic arbors. For
each dendritic arbor, the number of branches intersecting a sphere is plotted
as a function of the sphere radius. The sphere radius was normalized by the
dendritic arbor span and the number of intersections was also normalized so
that the total dendritic length is equal to unity (see Methods for detailed
description). The Sholl plots for different dendritic arbors are combined and
best fitted by the function p = 2.196x1.375exp(−0.92x2.398). The inset shows
the head of the Sholl plots in log-log coordinates, which can be fitted by a
power law with the exponent µ = 1.273± 0.081.
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5.2 Scaling Laws of Dendrites

First, we revisit the Sholl plot [123] that has been the main tool for

dendritic shape analysis in the last fifty years. A 3D Sholl plot gives the

number of branches intersecting spheres of different radii. We generalized

the original scheme so that the center of the sphere does not have to be the

soma, but can also be other dendritic segments (see Methods for a detailed

description). We combine generalized Sholl plots for different pyramidal basal

dendritic arbors by normalizing the sphere radii by the dendritic arbor span

and the total dendritic length to one. The plot can be fitted nicely with a

function of the form ∼ xµexp(−xδ) (Figure 5.1). The head of the Sholl plot

can be fitted by a power law with exponent µ = 1.273±0.081 as demonstrated

on the log-log scale (Figure 5.1). This implies that, in a statistical sense, a

fragment of an arbor looks like a scaled down version of the whole arbor, i.e.,

the arbor is self-similar.

Another important relationship, seemingly unrelated to the Sholl plot,

is the dependence of dendritic span on the total dendritic length. Because

existing 3D datasets cover only a limited range, we turn to a collection of

basal pyramidal dendrites drawn on 2D from various cortical areas. Using

the 2D dataset we show that dendritic arbor span scales as a power of total

dendritic length and the exponent ν = 0.445± 0.010 (Figure 5.2).

If arbors are built according to common rules, the statistics inside one

cell and across cells must follow a scaling relation. Details of the derivation
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Figure 5.2: Dependence of the dendritic arbor span on the total dendritic
length. The red curve is the power law fit with exponent ν = 0.445 ± 0.010.
Inset is the same plot in the log-log coordinates.

are presented in the Methods, where we show that

µ = 1/ν − 1. (5.1)

The measured exponents satisfy approximately Equation 5.1.

Therefore, neurons seem to obey a scaling law in the sense that a part of

a big cell looks statistically similar to an entire smaller neuron. This is a non-

trivial result as many biological objects scale differently: the bigger neuron

could be just a scaled up version of the smaller neuron.

To verify that our 2D and 3D datasets are consistent, we compare 2D

Sholl plots from the two datasets and show that they accord with each other

(Figure 5.3).
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Figure 5.3: Comparison of the generalized Sholl plots between two datasets.
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cortical surface. The generalized Sholl plots of the two datasets are consistent
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5.3 Maximizing connectivity repertoire under

the wiring cost constraint explains scaling

law

In this section, we propose that the scaling laws could follow from max-

imizing functionality of dendrites while minimizing their cost. We will sum-

marize the key steps in formulating the theory. The detailed derivations are

presented in the Methods.

First, we quantify the cost of dendrites. Because dendrites take up valu-

able space they must invoke costs proportional to their total length. Another

contribution to the cost of dendrites is the attenuation of synaptic currents

from synapses to soma, which increases with longer path length and smaller

dendritic diameter. By calculating the optimal dendritic diameter and substi-

tuting it into the cost expression, we find that the cost can be approximated

as a product of total dendritic length and path length.

Second, we consider dendritic functionality assuming that the principal

role of dendritic arbors is to implement connections with axons of other neu-

rons. Then the functionality of dendrites can be quantified by the number

of possible connectivity patterns that could be achieved, or in other words, a

connectivity repertoire.

How can we estimate the number of different connectivity patterns of

dendritic arbors? Our calculation relies on the following assumptions.

• Individual neuron acts as a single unit. Thus an actual connection rep-

resents a pre- post-synaptic neuron pair irrespective of the number of
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actual synapses made between them.

• Appropriate axonal inputs of a dendritic arbor are randomly distributed

in space. This assumption is in contrast to the specious alternative,

which states that the appropriate axonal inputs form specific spatial

patterns and determine the dendritic arbor shape. Such hypothesis is

unrealistic because synapses are made every half micron on a dendrite

and an entire arbor receives ∼ 104 synapses [42]. It is unlikely that all

the appropriate inputs of a dendritic arbor happen to align into lines and

arrange into a tree-like spatial pattern. Even if this could be achieved

for a single arbor, it is impossible to arrange so many inputs specifically

and simultaneously for thousands of neurons in the neuropil.

• A dendritic arbor is sparse so that when an axonal arbor field overlap

with the dendritic arbor field, the probability of establishing a potential

synapse is small (i.e., axonal and dendritic segments come within a spine

length of each other, allowing them to form an actual synapse by growing

a spine). This assumption implies that the majority of potentially pre-

synaptic axons establish a single potential synapse with the dendrite,

which has been tested experimentally for excitatory cortical neurons.

For example, in cat V1 the fraction of potentially pre- post-synaptic

neuron pairs connected through two potential synapses is estimated to

be less than 10 percent (based on data from Stepanyants et. al. [139]).

Higher order potential connections occur even less frequently and will be

disregarded.

• Dendritic arbors are characterized as flexible chains jointed by rigid seg-
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ments, and the length of a rigid segment is much longer than the inter-

synapse interval on a dendrite. This assumption should be tested exper-

imentally in the future, for example, through measuring the stiffness of

dendritic segments of neurons in culture.

We then estimate the connectivity repertoire by calculating the number

of different potential synapses combinations through counting the number of

dendritic arbor conformations (Figure 5.4A) and by enumerating the number

of connectivity patterns through choosing actual connections out of potential

synapses (Figure 5.4B). The strength of this approach is that the number

of arbor conformations can be calculated by using the formulism from the

statistical physics of polymers.

When choosing actual connections out of potential synapses we must take

into account the possibility that even under the assumption that dendritic

arbors are sparse, some axons can still establish two potential synapses with a

dendritic arbor (double-hits, Figure 5.4C). These additional potential synapses

do not expand the repertoire of different connectivity patterns and must be

subtracted from the number of combinations.

To maximize the connectivity repertoire and thereby to reduce the num-

ber of “double-hits,” a dendritic arbor favors longer dendritic branches and

bigger arbor span. To see this qualitatively, let us consider two 3D dendritic

arbors projected on a 2D plane (Figure 5.5A,B). Both arbors have the same

total dendritic length but arbor B has a smaller arbor span than arbor A.

Straight axons shooting in a direction perpendicular to the 2D plane have a

bigger chance to double-hit the smaller arbor, because there are more over-
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A B C

Figure 5.4: Schematic illustrations of major steps in estimating the connec-
tivity repertoire of dendritic arbors. Red – dendrites, blue – axons. (A)
Calculation of different arbor conformations. (B) Calculation of different con-
nectivity patterns by choosing actual connections out of potential synapses.
(C) Subtraction of “double-hits” due to the fact that some axonal arbors can
establish two potential synapses with the dendritic arbor, as shown by the
black circles.
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A B

Figure 5.5: Number of axons establishing two potential synapses with a den-
dritic arbor (“double-hits”) depends on the dendritic arbor span. In this
schematic illustration, two 3D dendritic arbors are projected onto a 2D plane.
Both arbors have the same total dendritic length but arbor B has a smaller
arbor span than arbor A. Solid blue circles represent straight axons passing
through the dendritic arbors in a direction perpendicular to the 2D plane.
Axons have a bigger chance to double-hit arbor B because dendritic branches
in a smaller arbor overlap more substantially, as shown by the black circles.

laps of dendritic branches on the 2D projection (black circles in Figure 5.5).

Therefore, subtracting the “double-hits” can be seen effectively as a repulsive

force to expand the arbor size.

To calculate the reduction of connecitivity patterns due to “double-hits,”

we rely on the density-density correlation function of an axonal arbor, g(r),

which is defined as the length density of the axonal arbor at a distance r from

a segment of the same axonal arbor. g(r) was measured for pyramidal axonal

arbors, as shown in Figure 5.6. At short distances, this plot can be fitted by

a power law with exponent γ = 1.25± 0.05.

Finally, by maximizing the connectivity repertoire while minimizing the
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Figure 5.6: Density-density correlation function of axonal arbors g(r). g(r)
is defined as the length density of axonal segments at a distance r from the
segment of the same axonal arbor. The head of g(r) from different axons are
combined and fitted by a power law with exponent γ = 1.25± 0.05.

dendritic cost, we find the power law dependence of dendritic arbor span on

the total dendritic length with exponent ν = 1
1+γ

. Although the exact values of

exponents must be verified, experimental measurements seem consistent with

theoretical predictions.

As a result of minimizing the dendritic cost, we find that the optimal

dendritic arbor shape is centripetal so that each segment of the dendrite is

directed towards the soma. Thus, the path length from a dendritic segment

to the soma is approximately equal to the euclidean distance between the

dendritic segment and the soma. We confirm this prediction by plotting the

tortuosity of basal pyramidal dendrites, which is defined as the ratio of the

path length to the euclidean distance. Data in Figure 5.7 shows that the

tortuosity is close to one.
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Figure 5.8: Dependence of the number of branch tips on the total dendritic
length. The red curve is the power law fit with exponent 0.6 ± 0.02. Inset is
the same plot in the log-log coordinates. The measurement was performed by
using the 2D dataset.
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In addition, the total number of dendritic branches of a centripetal arbor

Nb can be approximated as Nb ≈ Ld/Rd ∼ L1−ν
d ∼ L0.55

d , where Ld is the total

dendritic length. To test this prediction, we counted the number of branch tips

of dendritic arbors and find it scales as a power law of the total dendritic length

with exponent 0.6± 0.02 (Figure 5.8). Thus, the experimental meansurement

seems close to the theoretical predictions.

5.4 Methods

5.4.1 Reconstruction of Neuronal Arbors

The 3D dataset consists of pyramidal neurons obtained from different

layers of the primary visual cortex of adult cats. The neurons were recon-

structed and digitized by other experimental groups [140, 141, 142]. Detailed

methodology has been described elsewhere [140, 141, 142]. Briefly, cells were

labeled with biocytin and biotinylated dexran amine in vivo and drawn us-

ing a computerized 3D reconstruction system, Neurolucida (MicroBrightField,

Cochester, VT) from multiple tissue sections. All reconstructions were cor-

rected for tissue shrinkage in three dimensions.

The 2D dataset consists of images of layer II-III pyramidal basal den-

drites obtained from different cortical areas of the primates, which are kindly

provided by Elston [143, 144, 122, 145, 146, 147, 148]. Cells were labeled with

Lucifer-yellow in vitro and drawn in a 2D plane parallel to the cortical surface

with the aid of camera lucida attached to a Zeiss microscope. All cells were

corrected for tissue shrinkage.
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5.4.2 Curve Fitting and Error Analysis

All the plots are fitted by using the nonlinear least squares method from the

MATLAB curve-fitting toolbox (MathWorks, Natick, MA). The errors of the

fitting parameters are within 95 percent confidence bounds.

5.4.3 Generalized Sholl Plot of Dendritic Arbors

We quantify the dendritic arbor shape by generalizing Sholl’s original

scheme [123], and the detailed analysis is described as follows. A sphere with

radius r was centered on one dendritic segment and the number of branches

intersecting the sphere was counted. Unlike the original Sholl plot in which

the center of the sphere is the soma, we repeat the procedure by using different

dendritic segments as the centers.

Because spheres near the exterior boundary of the arbor intersect fewer

branches than they normally do, we restricted our measurement to the interior

part of the arbor by requiring that the distance between the origin of a sphere

and the centroid of the arbor is less than one half of the dendritic arbor span

Rd, where R2
d is defined as the mean square distance from any dendritic seg-

ment to any other dendritic segment, i.e., R2
d = (1/K2)

∑K
i=1

∑K
j=1 |ui − uj|2.

Here ui and uj are Cartisian coordinates of the center mass of the dendritic

segments.

Then, for a given r, the mean number of branches intersecting the spheres

ζ was found by averaging over different origins of the spheres.

To combine the generalized Sholl plots that show the dependence of ζ on

r for different dendritic arbors, we normalized the sphere radius r to x = r/Rd
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and the total dendritic length to unity by scaling the number of intersections

ζ to p = ζR/Ld, where Ld is the total dendritic length before normalization.

The generalized Sholl plots after normalization excluded sphere radii

smaller than 0.1. At that scale, spheres do not intersect multiple dendritic

branches, which leads to a constant number of intersections.

By combining the basal dendrites in the 3D dataset, we find that the

generalized Sholl plots can be nicely fitted by the function of the form

p = b1x
µexp(−b2x

δ), (5.2)

The coefficients b1 and b2 are chosen so that the total dendritic length is

normalized to unity:
∞∫

0

p(x)dx = 1, (5.3)

and the second moment that defines R2
d is also normalized to unity

∞∫
0

p(x)x2dx = 1. (5.4)

In addition, the head of the Sholl plot (sphere radii x ranging from 0.1 to 0.5)

is fitted separately by a power law function (p ∼ xµ).

The generalized 3D Sholl plot can be easily extended to the 2D Sholl

plot by counting the number of branches intersecting the circles rather than

spheres.
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5.4.4 Analysis of 2D Dendritic Arbors

To analyze the 2D dataset, we converted the raw images of dendritic

arbors into skeletonized binary images, where dendritic segments are repre-

sented by white pixels with value 1. To measure the arbor span Rd, we cal-

culate the mean square distance from any white pixels to any others, i.e.,

R2
d = (1/K2)

∑K
i=1

∑K
j=1 |ui − uj|2,where ui and uj are Cartisian coordinates

of pixel 1s. The total dendritic length was calculated by counting the number

of white pixels multiplying the pixel size. To calculate the total number of

branch tips, we counted the number of white pixels whose seven out of eight

neighboring pixels are 0. We made generalized Sholl plots for a 2D dataset by

following the same procedure as in the 3D Sholl plot, except for using circles

rather than spheres to intersect the arbors. All programming was done in

MATLAB (MathWorks, Natick, MA).

5.4.5 Scaling Relationship of Self-similar Dendritic Ar-

bors

We have shown that the head of the Sholl plot can be fitted by a power law

with exponent µ, and the dependence of arbor span Rd on the total dendritic

length Ld can be fitted by a power law with exponent ν. In this section, we

show that these two exponents satisfy Equation 5.1 in self-similar dendritic

arbors.

Consider a sphere with radius r � Rd centered on a dendritic segment.

In the sphere, we have dendritic branches with total length l. If part of a

dendritic arbor shows the same statistical properties as the entire arbor, we
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have r ∼ lν . Then the number of branches intersecting the sphere ζ is given

by the dendritic length within the spherical shell of thickness ∆r at r divided

by ∆r. By taking the limit ∆r → 0, we have

ζ =
dl(r)

dr
∼ r1/ν−1 ∼ rµ. (5.5)

Thus, the relationship between ν and µ satisfies

µ =
1

ν
− 1. (5.6)

5.4.6 Quantitative Expression for the Cost of a Den-

dritic Arbor

Based on the results presented in Chapter 4, we postulate that the cost

of a dendritic arbor is the sum of the dendritic volume, Vd, and the signal

attenuation, Td,

Ed = Vd + αTd, (5.7)

where α is a constant coefficient.

If we model a dendritic segment as a solid cylinder, the volume of a

dendritic arbor can be straightforwardly expressed in terms of its total length,

Ld, and its mean diameter, dd,

Vd ∼ Ldd
2
d. (5.8)

The attenuation cost Td may be quantified as the sum of fractional at-
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tenuation of the voltage signal from synapses to the soma. Assuming that the

mean path length from a synapse to the soma, `, is much smaller than the

space constant, we have

Td ∼ N
`

dθ
d

, (5.9)

where θ is a positive power and C is the number of actual connections converg-

ing on a dendritic arbor. Combining Equations 5.8 and 5.9 we can re-write

Equation 5.7 as:

Ed ∼ d2
dLd + αC

`

dθ
d

. (5.10)

According to Equation 5.10, the volume and attenuation have opposite

dependence on the dendritic diameter and the competition between them de-

termines the optimal diameter. By setting ∂Ed/∂dd = 0, we find that the

optimal dendritic diameter is given by

dd ∼
(

`C

Ld

) 1
2+θ

. (5.11)

By substituting Equation 5.11 into Equation 5.10, Ed is given by

Ed ∼ `
2

2+θ C
1

2+θ L
(1− 1

2+θ )
d . (5.12)

If we assume C ∼ Ld as suggested by anatomical data [126], Equation 5.12

can be rewritten as

Ed ∼ `
2

2+θ Ld. (5.13)
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If θ � 1, the dendritic cost may be approximated as

Ed ∼ `Ld. (5.14)

Moreover, to minimize Ed in Equation 5.14, the typical path should be

as short as possible. However the path length ` cannot be smaller than the

arbor span, Rd. To estimate by order of magnitude, we have

` ∼ Rd. (5.15)

To satisfy Equation 5.15, each segment of the dendrite must be directed to-

wards the soma. We call such arbor design centripetal.

5.4.7 Calculation of the Number of Possible Connectiv-

ity Patterns of Sparse Centripetal Arbors

In this section, we will estimate the total number of actual connectivity

patterns Ω of centripetal dendritic arbors. An actual connection represents a

pre- post-synaptic neuron pair irrespective of the number of actual synapses

made between the neurons. For our calculation, we assume that the axonal

inputs are randomly distributed in space and the dendritic arbor is sparse so

that when an axonal arbor field overlap with the dendritic arbor field, the

probability P of establishing a potential synapse is small (i.e., axonal and

dendritic segments come within a spine length of each other, allowing them to

form an actual synapse by growing a spine).

Under the above assumptions, Ω can be calculated as follows. First, we
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will estimate different potential synapses combinations through estimating the

total number of distinct arbor conformations Ωp. To calculate arbor confor-

mations, we model dendritic arbors as flexible chains that are jointed by rigid

segments. Second, we show that when the length of a rigid segment is much

longer than the inter-synapse interval on a dendrite, the number of common

connectivity patterns that can be achieved by two distinct arbor conformations

is small. Then, we could calculate Ω as the product of Ωp, and the number of

actual connectivity patterns that can be achieved by a given arbor conforma-

tion, Ωa. Third, we enumerate Ωa by choosing actual connections out of the

potential synapses established between axonal and the dendritic arbors.

Different arbor conformations Ωp

To calculate the number of conformations of branching and centripetal

dendritic arbors Ωp, we characterize the arbor with total length Ld as a con-

tinuous and flexible chain, which is composed of Ld/a rigid segments and each

has length a. Thus, our problem is equivalent to calculating the entropy of a

fully stretched and branching polymer with persistent length a.

The entropy of fully stretched branching polymers depends on the poly-

mer span Rd and the average path length between one segment and the other `

[149]. Here, we may omit the detailed derivation and refer the final expression

[138, 149]:

log Ωp(Rd, `) = S0(Ld, a) +
`

a
log(1− Rd

`
), (5.16)

where S0 is the total entropy of randomly branching polymers with the leading

term S0 ≈ Ld/a.
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Then, Given the number of actual connectivity patterns that can be

achieved by an arbor, Ωa, the logarithm of the total number of achievable

connectivity patterns Ω can be expressed as

log Ω = log Ωp + log Ωa, (5.17)

To justify Equation 5.17, we should take into account the fact that two

different arbors can probably have the same actual connectivity patterns and

show that the number of common connectivity patterns is much smaller than

Ω. As an axon has probability P to establish a potential synapse with a

dendritic arbor, the chance that two distinct arbors receive the same C con-

nections is PC . Then, a given connectivity pattern can be achieved by PCΩp

distinct arbors. Thus the total number of common connectivity patterns is

ΩPCΩp, which is a small correction and can be ignored if

PCΩp � 1. (5.18)

By substituting Equation 5.16 into Equation 5.18, we find that log(PCΩp)

∼ Ld/a−C � 0 provided that Ld/C � a. Therefore, Equation 5.17 is a valid

approximation when the inter-synapse interval is smaller than the persistent

length a. This assumption should be tested experimentally.

Different connectivity patterns for a given arbor conformation Ωa

For a given dendritic arbor conformation, we calculate the number of

connectivity patterns Ωa by choosing C actual connections out of Cp potential
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synapses established between the dendritic arbor and the axons. The result

would simply be the binomial coefficient
(

Cp

C

)
provided that each potential ax-

onal arbor made just one potential synapse with the dendritic arbor. However,

even under the assumption of sparse arbors, a small number of axons, N2, will

establish two potential synapses with the dendritic arbor (i.e., “double-hits”).

If we Assume that a neuron acts as a unit, Ωa is reduced to

Ωa =

(
Cp −N2

C

)
. (5.19)

Because in the case of sparse arbors, Cp � N2 � 1, the logarithm of Ωa

can be approximated as

log Ωa ≈ log

(
Cp

C

)
+ N2 log(1− f), (5.20)

where f = C/Cp is called the filling fraction. The above equation shows that

the “double-hits” from N2 axons lead to a negetive correction.

For cortical excitatory neurons, Stepanyants et. al [37] has estimated the

filling fraction and found it much smaller than one. Then, using the relation

log(1− f) ≈ −f , we can simplify Equation 5.20 further as

log Ωa ≈ log

(
Cp

C

)
−N2

C

Cp

, (5.21)

Number of axons with double-hits, N2

To estimate the number of axons with double-hits, N2, first, we will esti-

mate the number of axons establishing potential synapses with two dendritic
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segments with length a by calculating the number of axons establishing poten-

tial synapses with one segment and the probablity of those axons establishing

potential synapses with the other dendritic segment.

As all the potential axons should fit within the spine length of a dendritic

segment, the number of axons establishing potential synapses with one segment

is given by the spine-reach zone area of the segment sa times the length density

of axons ρa, where ρa is defined as the total length of axonal arbors within a

chunk of neuropil divided by the neuropil volume.

Consider two dendritic segments i and j separated by a distance rij � s

and an axonal arbor that has established a potential synapse with dendritic

segment i. The probability of establishing potential synapses with both den-

dritic segments is the product of the spine-reach zone area of the dendritic

segment j, sa, and the length density of the axonal arbor at distance r from

the axonal segment that establishes potential synapse with dendritic segment

i, g(rij) (i.e., density-density correlation function).

As a result, the total number of axons establishing potential synapses

with both segments is given by s2a2ρag(rij).

Next, by summing the number of axons establishing potential synapses

with all pairs of dendritic segments of the arbor, we have

N2 =
1

2

Ld
a∑

i=1

Ld
a∑

j=1

s2a2ρag(rij) =
1

2
ρas

2L2
d 〈g(rij)〉 , (5.22)

where 〈g(rij)〉 averages the density-density correlation function for different

rij .

Moreover, in the spirit of mean field approach, we make an essential
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approximation by replacing 〈g(rij)〉 with g(〈rij〉) ∼ g(Rd), where all the cor-

relations between dendritic segments are ignored. Thus, the number of axons

with double-hits may be estimated as

N2 ≈ s2L2
dρag(Rd). (5.23)

Substituting Equation 5.23 into Equation 5.21, we obtain

log Ωa ≈ log

(
Cp

C

)
− ρas

2L2
dC

Cp

g(Rd), (5.24)

Because the total number of potential synapses of a dendritic arbor Cp is set

by the spine-reach zone area of the arbor, sLd, times the length density of

axons ρa, [13, 37], Equation 5.24 can be rewritten as

log Ωa ≈ log

(
Cp

C

)
− sLdCg(Rd). (5.25)

Now, by substituting Equations 5.16 and 5.25 into Equation 5.17 and

leaving out all the constant terms independent of the arbor span Rd, we arrive

at the full expression for the total number of achievable connectivity patterns

Ω,

log Ω ∼ `

a
log(1−Rd/`)− sLdCg(Rd). (5.26)

We note that subtraction of the connectivity patterns due to double-hits can

be viewed effectively as a repulsive force, and the second term −sLdCg(Rd) is

analog to the Flory-like term in calculating the entropy of real polymer chains

in good solvents.
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5.4.8 Scaling Law of Dendritic Arbors

In this section, based on the hypothesis that dendrites maximize the

available connectivity patterns Ω while minimizing the cost Ed, we derive the

power law between the arbor span Rd and the total dendritic length Ld. We

perform such optimization by minimizing the following objective function,

F = βE − log Ω, (5.27)

where β is an unknown constant coefficient reflecting the relative contribution

of the dendritic cost to the objective function.

By substituting Equations 5.14, 5.26 into Equation 5.27, we have

F ∼ β`Ld −
`

a
log(1− Rd

`
) + sLdCg(Rd). (5.28)

We will find the optimal arbor span by sequentially minimizing F as a

function of ` and Rd. After setting ∂F/∂` = 0, we find that

βLda ∼ log(1−Rd/`) +
1

`/Rd − 1
. (5.29)

Since ` ≈ Rd, the first term on the right side of Equation 5.29 is much smaller

than the second term and can be ignored. Thus we have

`/Rd ∼ 1 +
1

βLda
. (5.30)

According to Equation 5.30, in order for this approach to be self-consistent,

we must have βLda � 1, which suggests that the dendritic arbor is fully
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stretched when the contribution of dendritic cost in the objection function F

is sufficiently high.

Next, substituting Equations 5.29 and 5.30 into Equation 5.28 and elim-

inating `, we have

F ∼ βLdRd + sLdCg(Rd). (5.31)

At short distance, g(Rd) can be approximated as a power law and Equation

5.31 becomes

F ∼ βLdRd +
sLdC

Rγ
d

, (5.32)

where γ is an exponent that can be measured from axonal data. Equation

5.32 has a minimum at which the arbor span Rd is optimal. Omitting all the

coefficients and assuming C ∼ Ld as suggested by anatomical data, we find

Rd ∼ L
1

1+γ

d . (5.33)

Using the value of γ = 1.25±0.05 as measured from axonal arbor of pyramidal

cells, we find that ν = 1
1+γ

= 0.44, which is in agreement with experimental

measurement (Figure 5.2).
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Chapter 6

Conclusion

In this thesis, by applying the constrained optimization approach, I have

successfully explained various aspects of the brain structures. The work is

based on one paper published in PloS computational biology (Chapter 3), one

paper that has been submitted to Journal of neurophysiology (Chapter 4) and

two manuscripts in preparation (Chapter 2 and Chapter 5).

The theory, however, is still far from being complete because we do not

know all the fundamental constraints of the system, and what is being opti-

mized under what constraint is also problem-dependent. How do you know

that certain cost has been optimized? We do not have a simple answer. Based

on how the principles are identified in the physical sciences, we sought to for-

mulate an optimization theory that has fewer assumptions and applies to more

cases (“Occam’s Razor”). In several cases, when experiments reveal discrep-

ancies, they lead to the discovery of new principles. For example, we have

shown that minimizing the dendritic cost alone cannot explain the sparse-

ness of pyramidal dendrites (Chapter 4). Such discrepancy forces us to find
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another principle: the dendritic arbor shape maximizes the total number of

connectivity patterns.

The optimization approach is straightforward in the sense that the theory

bypasses the highly complicated developmental processes of the brain. Yet

this is also its weakness because ultimately we want to know how the brain

structures are formed through the genes. It would be interesting to know, for

example, what kind of molecules can act like a repulsive force among dendritic

branches so that the final form of an arbor is sparse.

Many puzzles in the brain structures remain unanswered. The following

are a couple of problems that may inspire future research.

• What determines the shape of an axonal arbor? Axonal arbors of pyra-

midal neurons are much larger and look more irregular than dendritic

arbors. Can we use the same principles to describe the axons?

• In many cases, when two neurons connect with each other, multiple

synapses are made. What are the advantages of such a design?

• Why are cell body positions different in different brain regions? In the

neocortex, cell bodies are scattered throughout the gray matter. In the

hippocampus and cerebellum, cell bodies are condensed into a single

layer.

With all these caveats in our mind, I am still very confident that our

approach is on the right track because we are able to explain such a broad

spectrum of anatomical features with relatively few assumptions. If the goal

of this chapter is to summarize the thesis with one sentence, I would like to
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ask a question reflecting a theoretical physicist’s idealism. “Can we have a

unified principle to describe the brain structures?”
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Notation and symbols

A: Total surface area of the white matter tracts, 42

At: Minimal surface area of a white matter tract, 37

B: Proportionality coefficient between conduction velocity and global axon

diameter, 28

B: Proportionality constant between myelinated axon diameter and conduc-

tion velocity, 5

C: Number of actual connections converging on a dendritic arbor, 108

Cp: Number of potential synapses converging on a dendritic arbor, 79, 112

D: Global axon diameter, 27

D: Myelinated axon diameter, 5

Dp: Potential divergence of an axonal arbor, 87

Ea: Cost of an axon, 10

Ed: dendritic cost, 77, 108

F : Free energy, 115
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G: Gray matter volume, 32

K: Cost per volume for a myelinated axon, 7

La: Length of a global axon, 27

La: Length of an axon, 17

Ld: Total dendritic length, 78, 102, 108

M : Number of white matter tracts, 38

N2: Number of axons with “double-hits”, 112

Nb: Number of dendritic branches, 102

P : Probability of establishing a potential synapse between an axonal and a

dendritic arbor, 110

R: Linear size of gray matter module, 34

R0: Optimal gray matter module size, 41

Rd: Dendritic arbor span, 80, 102, 105, 109

T : Global conduction delay, 27

Ta: Conduction delay of an axon, 10

Td: Attenuation of a dendritic arbor, 77, 108

V : Brain volume, 28

Va: Volume of an axon, 10
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Vd: Dendritic volume, 77, 107

Ω: Total number of actual connectivity patterns, 109

Ωa: Number of actual connectivity patterns that can be achieved by a given

arbor conformation, 110

Ωp: Total number of distinct arbor conformations, 110

Φ: Cross-sectional area of a white matter tract, 37

α: Unit attenuation cost, 77, 108

α: Unit conduction delay cost, 10

β: Relative contribution of dendritic cost, 115

`: Average path length between two connected neurons (via potential synapses),

23

`: Mean path length from a synapse to the soma, 78, 108

εm: Cost of a myelinated axon per length, 7

εn:Cost of a non-myelinated axon per length, 7

η: Potential interbouton interval, 87

γ: Scaling exponent in the density-density correlation function of an axonal

arbor, 100

λ: Ratio of global axon volume that is finely intermixed with local connections

to the initial unperturbed gray matter (i.e., total local circuits) volume,

31
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µ: Scaling exponent in the Sholl plot, 94

ν: Critical exponent between dendritic arbor span and total dendritic length,

94

ρa: length density of axons, 113

θ: Scaling exponent, 79, 108

θ: scaling exponent between conduction velocity and axon diameter, 16

θ: scaling exponent between conduction velocity and local wire diameter, 24

ξ: space constant, 78

ζ: Mean number of branches intersecting the spheres in the Sholl plot, 105

a: Persistent length, 110

b: Proportionality constant between local wire diameter and conduction ve-

locity, 24

b: Proportionality constant between non-myelinated axon diameter and con-

duction velocity, 5

d: Local wire diameter, 23

d0: critical diameter, 6

da: Non-myelinated axon diameter, 5

dd: Dendritic diameter, 78, 108

f : filling fraction, 112
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g(r): Density-density correlation function of an axonal arbor, 100

k: Cost per volume for a non-myelinated axon, 7

n: Total number of neurons in the local network, 25

p: Normalized number of intersections, 105

s: spine length, 81

t: Local conduction delay, 23

v0: Conduction velocity when vm = vn, 6

vc: Critical conduction velocity, 8

vm: Conduction velocity of a global axon, 27

vm: Conduction velocity of a myelinated axon, 4

vn: Conduction velocity of a non-myelinated axon, 5

vn: Local conduction velocity, 23

vs: Average synapse volume, 25

x: Normalized sphere radius in the Sholl plot, 105
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