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A quantitative characterization of brain-wide activity imposes strong constraints on mechanistic models that12

link neural circuit connectivity, brain dynamics, and behavior. Here, we analyze whole-brain calcium activity13

in larval zebrafish captured by fast light-field volumetric imaging during hunting and spontaneous behavior.14

We found that the brain-wide activity is distributed across many principal component dimensions described15

by the covariance spectrum. Intriguingly, this spectrum shows an invariance to spatial subsampling. That16

is, the distribution of eigenvalues of a smaller and randomly sampled cell assembly is statistically similar to17

that of the entire brain. We propose that this property can be understood in the spirit of multidimensional18

scaling (MDS): pairwise correlation between neurons can be mapped onto a distance function between two19

points in a low-dimensional functional space. We numerically and analytically calculated the eigenspectrum20

in our model and identified three key factors that lead to the experimentally observed scale-invariance: (i)21

the slow decay of the distance-correlation function, (ii) the higher dimension of the functional space, and (iii)22

the heterogeneity of neural activity. Our model can quantitatively recapitulate the scale-invariant spectrum23

in zebrafish data, as well as two-photon and multi-area electrode recordings in mice. Our results provide24

new insights and interpretations of brain-wide neural activity and offer clues on circuit mechanisms for25

coordinating global neural activity patterns.26
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1 Introduction29

Geometrical and statistical analyses of neuronal population activity have shed light on the hidden structures of30

neural representations and brain dynamics. Dimensionality reduction methods, which seek to identify collective31

variables or latent variables underlying neural populations, promise to provide a simplified view of high-dimensional32

neural data (1, 2). Their applications to optical and multi-electrode recordings have begun to reveal important33

mechanisms by which neural cell assemblies process sensory information (3–5), make decisions (6–8), and34

generate motor behaviors (9–11). The fundamental reason for thinking of neural computation in terms of a small35

number of collective variables is the ubiquitous observation of neural correlation, whose structure is shaped by the36

synaptic connectivity between neurons and the statistics of external stimuli (12, 13). A large body of works has37

focused on the correlation between neurons (14), which can be measured for a large number of simultaneously38

recorded neurons within a reasonable amount of time (15). Theoretical analyses on the nature and structure of39

correlation have implicated its detrimental or beneficial roles in information coding (16–20), as well as its central40

contribution to synaptic plasticity (21), memory formation, and attention (22–24).41

42

Here, we study the pairwise correlation structure in the brain-wide activity in larval zebrafish described by the43

covariance matrix, which contains fundamental information about the population activity. The eigenvectors of the44

covariance matrix correspond to the principal components of Principal Component Analysis (PCA), one of the45
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2.1 Statistical features of zebrafish brain-wide activity

widely used dimensionality reduction methods. The effective dimension of the subspace spanned by the principal46

components (PCs) depends on the moments of covariance eigenvalues and has gained much recent interest.47

On the one hand, many experimental studies that focus on specific brain regions observed low dimensional48

trajectories of population neural dynamics when animals were engaged in instructed tasks (25, 26). On the other49

hand, recent analyses of brain-wide activity (27) in freely behaving C. elegans (28), Drosophila (29), as well as50

mice (30, 31) revealed that movements- and behavior-related neural activity are distributed across many principal51

components. Interestingly, several studies discovered that the eigenvalues of the covariance matrix exhibit an52

approximate power-law distribution in both the full dataset (32, 33) and its coarse-grained version (32), namely53

iteratively combining maximally correlated neuron pairs. Whereas several theoretical models have been proposed54

to explain the power-law spectrum (32–35), a general model applicable for brain-wide activity and the conditions for55

the scale-invariant phenomenon remain elusive.56

57

Using fast light-field microscopy (36), we measured brain-wide calcium activity in larval zebrafish during hunting58

or spontaneous behavior (Fig. 1A). We found that across 4 animals, the randomly subsampled neural covariance59

matrices appear statistically similar to that of the entire brain (Fig. 1F). The similarity is manifested by plotting60

the eigenvalues of the subsampled covariance matrices in descending order against their normalized ranks. The61

eigenvalue curves corresponding to different sizes nearly collapse onto each other except for the largest eigenvalue62

(Fig. 1G). We verified this observation in datasets recorded by different experimental methods, including light-sheet63

imaging of larval zebrafish (37), two-photon imaging of mouse visual cortex (31), as well as multi-area Neuropixels64

recording in mouse (31).65

66

To explain this scale invariance phenomenon, we model the covariance matrix of brain-wide activity by generalizing67

the Euclidean Random Matrix (ERM) (38): neurons are mapped onto randomly distributed points in a d-dimensional68

Euclidean space, and pairwise correlation between neurons decays according to their distance in this functional69

space. Our analytical and numerical calculations point to three key factors that play crucial roles in contributing to70

the scale invariance of the eigenspectrum: the slow decay of the distance-correlation function, the higher dimension71

of the functional space, and the heterogeneity of neurons’ activity levels. Built upon our theoretical results, we use72

multidimensional scaling (MDS) and a parameterized distance function to infer the coordinates of each neuron in the73

functional space, and apply Canonical Correlation Analysis (CCA) to identify a relationship between the anatomical74

positions of neurons and their locations in the functional space. Taken together, these results bring a new vista of75

brain-wide activity and its organization, with unexplored consequences on neural computation.76

2 Results77

2.1 Statistical features of zebrafish brain-wide activity78

We simultaneously recorded brain-wide calcium activity at 10 Hz volume rate in head-fixed larval zebrafish using79

the XLFM microscope (36). The behaviors of the fish, including hunting attempts, were captured by a high-speed80

infrared camera (50 Hz) (Fig. 1A, B). The hunting behavior, which is composed of stereotyped motor sequences81

such as eye convergence and J-turn, was triggered by a live paramecium whose direction of movement was82

precisely controlled by a magnetic field (Methods). We recorded spontaneous brain activity and behaviors in the83

absence of sensory stimuli in one fish as a control. Around 2000 ROIs (1985.8 ± 762.8, mean ± SD) with volume84

278.9 ± 381.2 µm
3 (mean ± SD) were extracted in each fish based on the spatiotemporal activity of each voxel85

(Methods). These ROIs likely correspond to multiple nearby neurons with highly correlated activity. For the sake of86

exposition, we refer to the ROIs as "neurons" in the sequel.87

88

Across all four zebrafish in our dataset, the distribution of neural activity covariance Cij (Methods), is broad,89

positively skewed with a long tail (Fig. 1C, and Fig. S1A-D for all animals and datasets from other studies). The90

brain-wide activity is also high-dimensional, requiring more than 250 dimensions to explain 50% of the activity91

variance (Fig. 1D). Consistent with this notion, when the eigenvalues of the covariance matrix are arranged in92

descending order and plotted against the normalized rank r/N , where r = 1, . . . ,N , or the rank plot, the curve93

is approximately a power law, ⁄ ≥ (r/N)≠–, for the top 1% to 10% large eigenvalues (Fig. 1G, – = 0.50 ± 0.07,94

mean±SD, R
2 = 97.6 ± 0.9%, mean±SD, n = 4 fish). Most intriguingly, the eigenspectrum curves of smaller,95

randomly subsampled covariance matrices (i.e., the covariance matrix for N randomly chosen neurons) nearly96

collapse with each other for a wide range of eigenvalues (except for around the first 1 to 5 eigenvalues, Fig. 1G).97

We can also directly visualize the similarity of the covariance matrices from randomly sampled neural populations98

(Fig. 1F) after properly rearranging the neuron indices (Methods).99

100

This observation of scale invariance in the covariance matrix is nontrivial and, for example, cannot be reproduced101
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2.2 ERM model and two factors contributing to scale invariance

when we replace its eigenvectors (i.e., the principal components) with a random orthonormal basis while the102

eigenvalues are kept identical (Fig. 1H, see Methods). Notably, after the eigenvector replacement, the heterogeneity103

of diagonal entries (i.e., the variance of neural activity) of the covariance matrix becomes much reduced (Fig. 1G,H,104

gray dots). We will revisit the implication of this observation in section 2.3.105

Figure 1. Whole brain imaging of zebrafish neural activity and the phenomenon of its scale-invariant eigenspectrum. A.
Fast simultaneous light-field calcium imaging of whole brain neural activity. B. Spatial distribution of segmented ROIs (shown in
different colors). There are 1347 to 3086 ROIs in each animal. C. Distribution of normalized pairwise covariances in an example
fish. The mean of diagonal entries of the covariance matrix is normalized to be 1. D. Explained variance of the activity data
by PCs up to a given rank. Thin lines with different colors represent different fish data (n=4). The dotted green line represents
the average across animals. E. Example segment of brain-wide neural activity. Black dots represent inferred firing rate. The
ROIs are arranged based on their weightings in the first PC. The entire recording for each fish is 16.9±4.5 min (mean±SD). F.
Iteratively subsampled covariance matrices. The ROI order in each subsampled covariance matrix is re-sorted such that entries
near the diagonal exhibit higher covariance. G. and H. Subsampled covariance eigenspectra of an example fish data (G) and
the covariance matrix constructed by substituting with random orthonormal eigenvectors (H). N is the number of neurons of the
subsampled covariance matrix. The shaded area represents the standard error of the mean (SEM). The rank plot is cutoff after
503 largest eigenvalues, which is the number of Principal Components (PCs) required to explain 90% of the total variance.

2.2 ERM model and two factors contributing to scale invariance106

Dimension reduction methods like MDS and tSNE (39, 40), have been widely used to analyze large-scale neural107

activity data by embedding neurons into a low-dimensional space to reveal functional organizations (37), with108

nearby neurons showing higher correlations than those that are far away. The Euclidean Random Matrix (ERM109
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2.2 ERM model and two factors contributing to scale invariance

(38)) prescribes a generative model for the covariance matrix in reverse to these ideas of dimensionality reduction.110

Neurons are assumed to be uniformly randomly distributed in a d-dimensional functional space, [0,L]d. The pairwise111

correlation between neurons i, j is determined by a kernel function f(x̨i ≠ x̨j), which is a decreasing function of their112

distance Îx̨i ≠ x̨jÎ in this functional space and f(0) = 1. The model is also justified by observing a broad and113

largely positive distribution of covariances in our data (Fig. 1C). To model the covariance matrix, we extend the ERM114

by introducing heterogeneous variances ‡
2
i of neural activity. ‡

2
i are drawn i.i.d. from a given distribution and are115

independent with the neuron coordinates x̨i. In sum, the covariance between neuron i and j is given by116

Cij = ‡i‡jf(x̨i ≠ x̨j), i, j = 1,2, . . . ,N. (1)

We first explore the ERM with a few forms of f(x̨) and find that fast-decaying functions such as the Gaussian pdf117

f(x̨) = e
≠ Îx̨Î2

2‡2
x and exponential function f(x̨) = e

≠ Îx̨Î
2b do not lead to eigenspectra similar to those observed in118

the data and no scale invariance over subsampling (Fig. S3). Therefore, we focus on f(x̨) with a slow-decaying,119

power-law tail f(x̨) Ã ÎxÎ≠µ for x ∫ 1, which we find can produce spectra qualitatively similar to data (Fig. 2D,E).120

Since by definition, f(0) = 1, the power law cannot hold near x = 0, and modifications are needed to avoid the121

singularity. In particular, we adopt122

f(x̨) = ‘
µ(‘2 +Îx̨Î2)≠µ/2

, (2)

which approximates a power law f(x̨) ¥ ‘
µÎx̨Î≠µ when Îx̨Î ∫ ‘ (Fig. 2B, C). This particular f(x̨) is inspired by the123

Student’s t-distribution and we choose it for its analytical tractability in subsequent calculations of the eigenspectrum124

(see also section 2.4). Note that there is a redundancy between the unit of the functional space (by using a rescaled125

‘” © ‘/”) and the unit of f(x̨) (by using a rescaled f”(x̨) © f(x̨/”)), so we arbitrarily set ‘ at a fixed value throughout126

this article.127

Figure 2. ERM model of covariance and its eigenspectrum. A. Schematic diagram of the ERM model. Bottom, scattered
blue points represent coordinates of neurons in a d = 2 functional space. The bigger the point, the greater its neural activity
variance ‡2

i . The functional distance (red line) between two example points (red) determines how strongly the two neurons are
correlated according to the kernel function f(x̨) (the surface above). The pairwise distance between two points as well as their
corresponding sizes together determine the covariance between two neurons. B. Visualizing the slow-decaying kernel function
f(x̨) (blue solid line, Eq. (2)) and its power-law asymptote (red dashed line) along a 1D slice. C. Same as B except on the log-log
scale. D. Rank plots of eigenvalues for the ERM correlation matrix (i.e., ‡2

i = 1 in Eq. (1) as shown by the rank plot of diagonal
entries in gray dots) over random subsampling (colors). The original neuron size is N = 1024, d = 2, L = 10, fl = 10.24 and f(x̨)

is given by Eq. (2) with µ = 0.5 and ‘ = 0.03125. The curves show the average over 100 ERM simulations, and each ERM uses
an identical subsample technique described in (Methods). The shaded area (most are smaller than the marker size) represents
SEM. E. Same as C but for the probability density functions (pdfs).
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2.2 ERM model and two factors contributing to scale invariance

To understand the properties of the covariance matrix generated as an ERM, we calculate analytically the distribution128

of eigenvalues, or eigenspectrum, of C (Eq. (1)) in the limit of N æ Œ, L æ Œ by generalizing the replica method in129

(38). A key parameter is the neuron density fl := N/L
d. In the high-density regime of fl ∫ 1, the probability density130

function (pdf) of the covariance eigenvalues can be approximated and expressed using the Fourier transform of the131

kernel function f̃(k̨):132

p(⁄) = 1
flE(‡2)

⁄

Rd

d
d
k̨

(2fi)d
”

3
⁄

E(‡2) ≠flf̃(k̨)
4

, (3)

where ”(x) is the Dirac delta function and E(‡2) is the expected value of the variances of neural activity. Without133

loss of generality, here and below we set E(‡2) = 1 (for simulated and data matrix C, this means multiplying C by134

a constant such that Tr(C)/N = 1). For the power-law kernel function f(x̨) in Eq. (2), it is straightforward to use135

Eq. (3) to show that for large eigenvalues ⁄ ∫ 1, the eigenspectrum follows a power law (see a derivation in S2):136

p(⁄) ≥ fl
µ

d≠µ ⁄
≠ 2d≠µ

d≠µ ,

and equivalently ⁄ ≥ (r/N)≠1+ µ
d fl

µ
d ,

(4)

where r is the rank of the eigenvalues in descending order. These equations provide intuitive explanations of the137

scale invariance over spatial subsampling. Note that subsampling in ERM (Eq. (1)) is equivalent to reducing the138

density fl. According to Eq. (4), the eigenspectrum becomes fl-independent or scale-invariant when µ/d æ 0. This139

predicts two factors contributing to the scale invariance of the eigenspectrum. The first is a small exponent µ in140

the kernel function f(x̨), which means pairwise correlations decay slowly with the functional distance and can141

be significantly positive across diverse functional modules and throughout the brain. Second, for a given µ, an142

increased dimension d would improve the scale invariance. The functional space dimension d may be viewed as the143

neuronal coding space (33); it can also be related to the number of globally projecting latent variables (34) as an144

alternative interpretation (see also Discussion, S2).145

146

We numerically verify our theoretical predictions of the two contributing factors to the scale invariance by147

directly comparing the subsampled eigenspectra in finite-size simulated ERMs across different combinations of µ148

and d (Fig. 3). Based on the discussion ensuing Eq. (3), here we consider the simplified case of ‡
2
i = 1 (we will149

revisit this later) in these simulations (Fig. 2D, E and Fig. 3). This also means that entries of C are correlation150

coefficients. To quantitatively assess the scale invariance, we introduce a collapse index (CI) motivated by Eq. (4).151

In the log-log scale rank plot, Eq. (4) shows that the spectrum shifts vertically by µ
d logfl for large eigenvalues.152

Therefore, we define CI as this average displacement (smaller CI means more invariant):153

CI := 1
log(q0/q1)

⁄ logq0

logq1

----
ˆ log⁄(q)

ˆ logfl

----dlogq (5)

Here q0 and q1 are quantiles to select the range of large eigenvalues and their choices are explained in Methods.154

For simulated ERMs and experimental covariance matrices, CI can be estimated using interpolation and quadrature.155

Using Eq. (5), Fig. 3 confirms that the scale invariance improves with a slower correlation decay when decreasing156

µ and when increasing functional dimension d. Note these results further demonstrate that the scale invariance of157

the covariance is a nontrivial phenomenon: with a large µ and small d, the covariance eigenspectrum can vary with158

scale significantly (Fig. 3C,D,H).159
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2.3 Heterogeneous activity levels across neurons enhance scale invariance

Figure 3. Impact of µ and d on the scale invariance of covariance eigenspectra in ERM. Columns correspond to µ = 0.1, 0.5,
0.9, 1.3, respectively, and rows correspond to d = 1, 2, 3, respectively (Eq. (1) and Eq. (2)). Other ERM simulation parameters:
N = 4096, fl = 256, L = (N/fl)

1/d, ‘ = 0.03125 and ‡2
i = 1. Each panel is similar to Fig. 2D but shows a single ERM realization.

For visualization purposes, the views in some panels are truncated since we use the same range for eigenvalues across all
panels.

2.3 Heterogeneous activity levels across neurons enhance scale invariance160

So far we have focused on the case of the covariance matrix with ‡
2
i = 1 in the ERM model (Eq. (1)), which means161

that C is a correlation matrix. It is then natural to check for any difference between the correlation and covariance162

matrix spectra. Using the introduced collapsed index (CI), we compare the level of scale invariance of the two163

spectra in the experimental data. Interestingly, we find that the CI of the covariance matrix is always smaller (i.e.,164

more scale-invariant) across all datasets (Fig. 4A, Fig. S4D, open versus closed squares), suggesting that the165

heterogeneity of neuronal activity variances ‡
2
i plays an important role in shaping the eigenspectrum.166

167

This finding, however, cannot be explained by the high-density theory Eq. (3), which predicts that the eigenspectrum168

of the covariance matrix is simply a rescaling of the correlation eigenspectrum by E(‡2
i ), and the heterogeneity of169

‡
2
i has no effect when fl ∫ 1. This theoretical prediction is confirmed by direct numerical simulations and quantifying170

the scale invariance using the CI (Fig. S4A). This means that the high-density theory cannot be used to explain the171

observed change of scale invariance in experimental data shown in Fig. 1G.172

173

Fortunately, we find that the discrepancy between theory and experimental data can be resolved if we consider174

ERM instead in the intermediate density regime fl = O(1). Here, the resulting CI decreases with E(‡4) (Fig. 4B),175

consistent with the observation in the experimental data. A better understanding of this phenomenon requires a176

more involved calculation of the eigenspectrum based on the Gaussian variational method (38), which specifies the177

eigenvalue pdf by a set of implicit equations that can be solved numerically (see Methods and S2). The variational178

theory significantly improves the matching between the ERM simulations at intermediate fl, where the high-density179

theory starts to deviate significantly (Fig. 4E,F, Fig. S2). Note that the departure of the leading eigenvalues in these180

plots is expected since the power-law kernel function we use is not integrable (see Methods for further elaborations).181
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2.4 Factors not affecting the scale invariance

Moreover, the scale invariance of the spectrum at µ/d æ 0 previously derived using the high-density result Eq. (4)182

can be extended to the intermediate-density regime by proving the fl-independence for the variational theory (S2).183

Finally, using the variational theory, we show that the heterogeneity of population neural activity, quantified by E(‡4)184

(recall that we fix E(‡2) = 1, Eq. (3)), indeed improves the collapse of eigenspectra for intermediate fl (S2). The185

theory captures the trend of how CI decreases with the heterogeneity of activity variances (Fig. 4B, see Methods for186

a discussion on the constant bias between theory and ERM simulation).187

Figure 4. Impact of heterogeneous activity levels. A. The collapse index (CI) of the correlation matrix (filled symbols) is found
to be larger than that for the covariance matrix (opened symbols) across different datasets: f1 to f4: four light-field zebrafish
data (10 Hz per volume, this paper); fl: light-sheet zebrafish data (2 Hz per volume, (37)); mn: Neuropixels mouse data, 30
Hz downsample to 10 Hz per volume, mp: two-photon mouse data, (3 Hz per volume, (31)). B. The CI as a function of the
heterogeneity of neural activity levels (E(‡4

)). We generate ERM where each neuron’s activity variance ‡2
i is i.i.d sampled from

a log-normal distribution with zero mean and a sequence of standard deviation (0,0.05,0.1, . . . ,0.5) in the natural logarithm of
the ‡2

i values. We also normalize E(‡2
i ) = 1 (Methods). The solid line is the average across 100 ERM realizations, and the

shaded area represents SD. C. Subsampled correlation eigenspectra of an example zebrafish data (fish 2). D. Same as C but
for the covariance eigenspectra. E. Comparing the pdfs of theoretical spectra (high density and variation method) with finite-size
simulations of a high-density ERM. The parameters are N = 1024, fl = 1024, d = 2, L = 1, µ = 0.5, ‘ = 0.03125, ‡i = 1. F. Same
as E but with fl = 10.24 and L = 10. We use 7200 time frames of data across all datasets in A,C,D.

2.4 Factors not affecting the scale invariance188

Having determined the factors that affect the collapse of the subsampled covariance spectra, we next turn attention189

to ingredients that have little impact on the scale invariance of the spectrum. First, we find that the shape of the190

kernel functions f(x̨) near x = 0 (Fig. S5, table S2) does not affect the distribution of large eigenvalues (Fig. 5A).191

Instead, the distribution of large eigenvalues is determined solely by the tail of f(x) as x æ Œ. This further justifies192

our use of a specific f(x̨) (Eq. (2)).193

194

Second, we explore how the spatial distribution of neurons in the functional space, or coordinate distribution,195

affects the collapse of the eigenspectra. Instead of the uniform distribution in a box used in Eq. (1), we generate196

neurons from a Gaussian distribution or forming clusters (Methods). In all cases of functional coordinate distributions,197

the large covariance eigenvalues (the top 1% æ 50% eigenvalues), with the possible exception of leading ones,198

remain the same (Fig. 5B).199

200

Lastly, we investigate how the geometry of the functional space affects the covariance spectrum. Specifically,201

we consider two new cases where points are uniformly distributed on the surface of a sphere or a hemisphere202

embedded in R3. The eigenspectrum again appears similar to that of the original ERM model where points are203

uniformly distributed in a 2D box [0,L]2 (Fig. 5C). Taken together, our numerical experiments with modified ERMs204

suggest that our results on the scale invariance of covariance eigenspectrum in sections 2.2 and 2.3 are robust to205

various modeling details.206
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2.5 Fitting the ERM model to experimental data

Figure 5. Factors do not affect scale invariance. A. Rank plot of the covariance eigenspectrum for ERMs with different f(x̨)

(see table S2). B. Same as A but for different coordinate distributions in the functional space (see text). C. Same as A but for
different geometries of the functional space (see text). D. CI of the different ERMs considered in A-C. The y-axis range is identical
to Fig. 4A. 1: Uniform distribution, 2: normal distribution, 3: Log-normal distribution, 4: Uniform 2 nearby clusters, 5: Uniform 2
faraway clusters, 6: Uniform 3-cluster, 7: spherical surface in R3, 8: hemispherical surface in R3. All ERM models in B, C are
adjusted to have a similar distribution of pairwise correlations (Methods). E. Rank plots of eigenvalues for the ERM correlation
matrix with Flat f(x̨) (table S2) (f(x̨) = 1 for values of x < ‘) and normal coordinate distributions in the functional space. F. Rank
plots of eigenvalues for the ERM correlation matrix with t-pdf f(x̨) (Eq. (2)) and 3-cluster coordinate distributions. ERM simulation
parameters: ERM simulation parameters: fl = 1024 and L = 1 in A. fl = 10.24 and L = 10 in B,C,E and F. In both cases, the
simulations use: N = 1024, µ = 0.5, d = 2, ‘ = 0.03125 and ‡2

i = 1.

2.5 Fitting the ERM model to experimental data207

Besides being a conceptually simple model to explain the scale invariance in brain-wide activity, the ERM can also208

be quantitatively applied to data as a method to analyze and explore the functional structure of neural activity. Our209

method below consists of two steps, by first fitting the ERM parameters and then use the multidimensional scaling210

(MDS) (39) to infer the functional coordinate x̨i of neurons.211

212

For a given dimension d and ‘ (recall ‘ being arbitrarily chosen (section 2.2)), µ of f(x̨) (Eq. (2)) and fl (or213

equivalently L) (section 2.2) can be fitted by comparing the distribution of pairwise correlations in experimental214

data and ERM (Methods). We found that an embedding dimension d Æ 5 gives an overall better fit than d > 5215

for the experimental pairwise correlation distribution (Methods). For the sake of simplicity, we use d = 2 unless216

stated otherwise when fitting the kernel function f(x̨) and the data covariance matrix. After determining the ERM217

parameters, we can use f(x̨) to translate the experimental pairwise correlations into pairwise distances for all218

neurons in the functional space. The embedding coordinates x̨i in the functional space can then be solved through219

standard optimization in MDS by minimizing the Sammon error (Methods).220

221

With inferred f(x̨), embedding coordinates x̨i, as well as data variances ‡
2
i = Cii, the fitted ERM closely222

reproduces the experimental covariance matrix (Fig. 6C,D) and its subsampling eigenspectra (Fig. 6A,B); the223

eigenvalue rank plot has a power-law coefficient – = 0.45 that closely matches the experimental – = 0.50. Using224

the embedding coordinates x̨i, we can directly evaluate the similarity between the data f(Îx̨i ≠ x̨jÎ) and the model225

f(x̨) (Fig. 6E). The matching is close for a wide range of distances, except for small distances and perhaps around226

the edge of the functional space (see also figures S7 and S8 for plots for all fish datasets). This quantitative similarity227

with data affirms our choice of considering a power-law f(x̨).228

229

MDS also reveals intriguing clustered structures in the functional space (Fig. 6G, also Fig. S9). This makes230

us wonder about their corresponding brain regions and potential functional roles in the brain-wide circuit. As231
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2.5 Fitting the ERM model to experimental data

a first step, we investigate the relationship between the neural map in the functional space and the anatomical232

space using the canonical correlation analysis (CCA). In particular, we apply CCA to find a pair of the leading233

canonical correlation basis vectors ą1 in the functional space and b̨1 in the anatomical space, respectively (arrows in234

Fig. 6G,H). These basis vectors satisfy that the projections of neuron coordinates along them, {x̨i · ą1} and {y̨i · b̨1}235

(y̨i is the anatomical coordinate), are maximally correlated among all possible choices of ą1 and b̨1. The comparison236

with the neuron-shuffled canonical correlation (Fig. 6F) shows that the observed RCCA between embedding237

coordinates x̨i and anatomical coordinates y̨i is highly significant. Interestingly, this RCCA increases with the238

embedding dimension and saturates when d > 6 (Fig. S8I-L). Fig. 6H shows the CCA result for an example fish239

(fish 4). In this example, b̨1 is approximately parallel to the rostrocaudal axis. When each neuron i is colored by the240

projection value {y̨i · b̨1} and displayed in the functional space (Fig. 6G), we observe an interesting correspondence241

between the clustering structures and anatomical coordinate (color). Likewise, we can color each neuron i in the242

anatomical space (Fig. 6H) by the projection value {x̨i · ą1}, which allows us to observe prominent localizations in243

brain regions such as the forebrain and the optic tectum. Taken together, our model reveals the phenomenon that244

functionally clustered neurons are also anatomically segregated (37), and the result is consistent with the literature245

that the brain-wide circuit in zebrafish is largely organized along the rostrocaudal axis (41).246

Figure 6. The relationship between functional and anatomical space by ERM fitting to data. A. Subsampled covariance
eigenspectra of an example zebrafish data (fish 4). B. Subsampled covariance eigenspectra of a fitted ERM model (see text).
C. Covariance matrix of the example data in A. D. Covariance matrix of the model in B. E. Comparison of the power-law kernel
function f(x̨) in the model in B (blue line) and the correlation-distance relationship in the data (red line). The distance is calculated
from the inferred coordinates using MDS. The shaded area shows SD. F. Top canonical correlation RCCA as a function of
embedding dimension d. The blue curve represents the first canonical correlation for the original data, while the green curve
is obtained using shuffled coordinates in the functional space. The error bars show SD across 100 trials. G. Distribution of
neurons in the functional space, where each neuron is color-coded by the projection of its coordinate along the canonical axis
b̨1 in anatomical space (see text). H. Distribution of neurons in the anatomical space, where each neuron is color-coded by the
projection of its coordinate along the canonical axis ą1 in functional space (see text).

Last but not least, we examine how the hunting behavior (see Fig. 1) would shape the covariance spectrum of247

brain-wide activity and affect its spatial scale invariance. While our head-fixed animals could not capture the prey,248

they exhibited characteristic eye convergence (both eyes move inward to focus on a specific object), a behavior249

commonly associated with hunting in larval zebrafish (42, 43), with a mean duration of 5.95±4.26 sec (mean±SD,250

n = 60 total number of convergence events across 3 fish under the hunting essay). When removing hunting frames251

from calculating the covariance matrix, we observe that the scale invariance (i.e., small CI) of the eigenspectra still252

persists ( a similarly small CI like Fig. 4A, Fig. 7). Moreover, the CI for the hunting removed data is comparable with253
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2.5 Fitting the ERM model to experimental data

both the full data and the control case that removes the same number of randomly selected time frames that are254

not hunting frames. This finding is also consistent with the scale invariance we observed in other datasets where255

animals were engaged in spontaneous behaviors (Fig. 6A, Fig. S1C-D), suggesting that scale invariance is a general256

phenomenon in the brain.257

Figure 7. Removing hunting intervals does not obliterate the scale-invariant eigenspectra. Subsampled covariance
eigenspectra of the example fish data (fish 2). A. Full data: using the entire recording time frames to calculate the covariance
matrix. B. Hunting removed: time frames corresponding to eye-converged intervals (putative hunting state) are removed in
calculating the covariance (Methods). C. Ctrl: similarly to B, but we randomly remove the same number of time frames that are
not those putative hunting frames from the original data.

3 Discussion258

In this study, we report that brain-wide neural activity in larval zebrafish is distributed across many dimensions259

(PCs) with a scale-invariant covariance spectrum. To explain this phenomenon, we use Euclidean Random260

Matrix (ERM) to model the covariance matrix, where the pairwise correlation is given by a nonnegative kernel261

function f(x̨) that monotonically decreases with the distance between neurons in the functional space. This262

non-negativeness brings a potential issue when applying to experimental data, where, in fact, a small fraction of263

pairwise correlations/covariances are negative. We have verified that the data covariance matrix spectrum (Fig. S11)264

remains virtually unchanged when replacing these negative covariances by zero (Fig. S11). This confirms that ERM265

remains a good model when the neural dynamics is in a regime where pairwise covariances are mostly positive (44)266

(see also Fig. 1C, Fig. S1A-D).267

268

Our work provides an alternative approach to a recent renormalization approach to characterize the scale-invariance269

of covariance spectrum (32). Inspired by Kardanoff’s block spin transformation (45), Meshulam and colleagues270

(32) analyzed the collective behavior of cell assembly in mouse hippocampus by iteratively combining maximally271

correlated neuron pairs and constructing coarse-grained descriptions of neural activity at different scales. When272

this procedure was used to organize size-dependent covariance matrices, it revealed a scale-invariant power-law273

eigenspectrum. Our observation, on the other hand, arises from the random subsampling of a large neural274

population. Interestingly, we also observe a similar collapse of eigenspectra in our data using the coarse-graining275

approach. Despite the technical differences between the two methods, we postulate that there is a fundamental276

connection between the underlying theories. One possible future direction, for example, would be to carry out the277

renormalization group procedure in the functional space that is mapped out by multi-dimensional scaling.278

279

One of the key factors we identified contributing to the scale invariance of the covariance spectrum is the280

slow-decaying, power-law kernel function, f(x̨) ≥ Îx̨Î≠µ. This kernel function is reminiscent of the spin correlation281

function at second-order phase transition in equilibrium statistical mechanics (46). Numerous studies in the literature282

have investigated the critical brain hypothesis, which suggests that when the brain is in a critical state, its information283

processing capabilities are optimized (44, 47, 48). A noticeable example is the coordinated bursts of activity284

spanning across cell assemblies, dubbed neuronal avalanches (47) based on an analogy with the sandpile model285

(49). One, however, must be cautious when making such an analogy. The brain, like many other biological systems,286

is open and dissipative. As a result, empirical observations of power laws do not necessarily mean that the system287
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4.1 Experimental method

is self-organized into criticality (SOC) (49), see for example (50).288

289

In our ERM model (in the high-density limit), the eigenvalue rank plot obeys a power law ⁄ ≥ r
≠–, with290

coefficient – < 1. Moreover, a perfect scale-invariance of the subsampled covariance spectra occurs when µ/d æ 0291

and the coefficient – approaches 1. We find that experimentally measured eigenspectrum all decayed slower292

than this critical value with – < 1. Interestingly, Stringer and colleagues (33) discovered that in the mouse visual293

cortex, the neural covariance spectrum in the stimulus space exhibited a power law that decayed faster with – > 1;294

theoretical analysis (33) suggests that – > 1 is a mathematical necessity for a smooth and differentiable population295

code. These two observations are not contradictory since their work (33) was looking at the signal correlation,296

namely the correlation of neural responses to visual stimuli, by excluding trial-to-trial variability, whereas our297

covariance is calculated from single-trial activity closer to the noise correlation (51). In addition, the neural activity298

space representing spontaneous and behavior-related activity and the subspace encoding sensory stimuli may be299

orthogonal to each other (31), and the corresponding eigenspectra can have very different statistical properties.300

301

A less studied but important factor that improves the collapse of the covariance spectrum is the heterogeneity of302

neural activity levels (quantified by variance ‡
2
i here). For the sake of simplicity, we assume that neural activity303

variances {‡
2
i }, i = 1,2, . . . ,N, are drawn independently in our ERM model (Eq. (1)). To check this assumption, we304

compare the CI of the original dataset with that of the variance-shuffled data, in which ‡
2
i for different neurons are305

randomly permuted, while correlations remain the same (this will also modify the covariances Ci ”=j according to306

Eq. (1)). In every light-field fish dataset (f1-f4), 2 out of 3 light-sheet imaging fish datasets, 0 out of 3 Neuropixels307

datasets, and 2 out of 3 two-photon calcium imaging datasets, the CIs of the original and shuffled data are not308

significantly different, supporting the independence assumption (Fig. S4C). In the other datasets, however, the CI309

of the original data is significantly smaller than that of the shuffled data (< 2.5%-quantile), indicating that there are310

additional fine statistical structures further improving the scale invariance of eigenspectrum. How to incorporate311

these additional covariance structures into the model and characterize their effect on the eigenspectrum is left for312

future work.313

314

One interesting question, which connects to other lines of research (34, 52), is how the geometry of the315

functional space/manifold affects the covariance eigenspectrum. With numerical simulations, we find that the316

geometry of the functional space does not necessarily affect the spectrum and its scale-invariance (Fig. 5).317

Nevertheless, it is not fully conclusive and welcomes further studies, since we cannot explore all possible topologies318

of the functional space. Complementary methods, such as the computation of persistent homology (53), may bring319

new insights into the topological structure of the functional space. Interestingly, one of the cases of a spherical320

functional space is closely related to a recent model developed by Morrell and colleagues (34), which successfully321

replicated the coarse-grained scale-invariance phenomenon observed in (32). In the model, neurons are driven322

by m latent variables with random readout vectors. If we focus on the spatial aspects of neural activity, the model323

can be approximately viewed as a generalized ERM (54) on a sphere in Rm≠1 (S2). This connection between the324

two models means that the dimension of the functional space, which contributes to scale invariance, may also be325

interpreted as the number of globally projecting latent variables.326

327

Finally, our work illustrated how to fit the ERM to experimental data and infer functional coordinates using328

MDS. This allows for further quantitative explorations of, for example, the relationship between the functional space329

and anatomical space in the brain (Fig. 6). An interesting avenue for future research could be to compare how330

the functional organizations (Fig. 6G) change over different behavior states of the animal (27, 41, 55) or between331

healthy and diseased subjects.332

4 Methods333

4.1 Experimental method334

The handling and care of zebrafish complied with the guidelines and regulations of the Animal Resources Center335

at the University of Science and Technology of China (USTC). All larval zebrafish (huc:h2b -GCaMP6f) were raised336

in E2 embryo medium (containing 7.5 mM NaCl, 0.25 mM KCl, 0.5 mM MgSO4, 0.075 mM KH2PO4, 0.025 mM337

Na2HPO4, 0.5 mM CaCl2, and 0.35 mM NaHCO3; also with 0.5 mg/L methylene blue) at 28.5 °C and with a 14-h338

light and 10-h dark cycle.339

340

To induce hunting behavior in larval zebrafish, we fed them with a large amount of paramecia over a period341

of 4-5 days post-fertilization (dpf). Next, the animals were subjected to a 24-hour starvation period, after which they342

were transferred to a specialized experimental chamber. The experimental chamber was 20mm in diameter and343
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4.1 Experimental method

Notation Description

C covariance matrix, Eq. (1)

Cij Pairwise covariance between neuron i, j; entries of C

⁄ eigenvalue of covariance matrix

p(⁄) probability density function of covariance eigenvalue, Eq. (3)

r rank of an eigenvalue in descending order, Eq. (4)

q fraction of eigenvalues up to ⁄ and q = r/N , Eq. (5)

f(x̨) = f(Îx̨i ≠ x̨jÎ) kernel function or distance-correlation function, Eq. (2)

f̃(k̨) Fourier transform of f(x̨)

µ power-law exponent in f(x̨), Eq. (2)

‘ parameter in f(x̨) to smooth the singularity near 0, Eq. (2)

N number of neurons

L linear box size of the functional space

fl density of neurons in the functional space

d dimension of the functional space

‡
2
i variance of neural activity, Eq. (2)

– power-law coefficient of eigenspectrum in the rank plot, section 2.1

x̨i neuron i’s coordinate in functional space

y̨i neuron i’s coordinate in anatomical space

ą1 leading canonical correlation basis vector in the functional space, section 2.5

b̨1 leading canonical correlation basis vector in the anatomical space, section 2.5

RCCA the first canonical correlation, section 2.5

Table 1. Table of notations.

1mm in depth, and the head of each zebrafish was immobilized via the application of 2% low-melting-point agarose.344

A careful removal of the agarose from the fish’s eyes and tail ensured that these body regions remained free to345

move during hunting behavior. Characteristic behavioral features such as J-turn and eye convergence could thus346

be observed and analyzed. Subsequently, the zebrafish were transferred into an incubator and stayed overnight.347

On the 7th dpf, several paramecia were introduced in front of the previously immobilized animals, each of which348

was monitored by a stereomicroscope. Those displaying binocular convergence were selected for further calcium349

imaging experiments.350

351

We developed a novel opto-magnetic system (56) that allows (1) precise control of paramecium moving trajectory352

and (2) brain-wide calcium imaging during zebrafish hunting behavior. To control paramecium movement, we treated353

these microorganisms with a ferric tetroxide suspension for 30 minutes, and those responsive to magnetic attraction354

were selected. A magnetic paramecium was placed in front of a selected animal and controlled by a changing355
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4.2 Other experimental datasets

magnetic field generated by Helmholtz coils that were integrated with the imaging system. The real-time position356

of the paramecium, captured by an infrared camera, was identified by on-line image processing. The positional357

vector relative to a predetermined target position was calculated. The magnitude and direction of the current in358

the Helmholtz coils were adjusted accordingly, allowing for precise control of the magnetic field and hence the359

movement of paramecium. Multiple target positions could be set to drive the paramecium back and forth between360

multiple locations.361

362

The experimental setup consisted of head-fixed larval zebrafish undergoing two different types of behavior:363

induced hunting behavior by a moving paramicium in front of a fish (fish 1-3), and spontaneous behavior without any364

visual stimulus (fish 4). The experiments were performed at ambient temperature (ranging between 23 to 25°C).365

The zebrafish behavior was monitored by a high-speed infrared camera (Basler acA2000-165umNIR, 0.66x) behind366

a 4F optical system and was recorded at 50 Hz. Brain-wide calcium imaging was achieved through the XLFM.367

Light-field images were acquired at 10 Hz, using either customized LabVIEW (National Instruments, US) software368

or Solis (Oxford Instruments, UK), with the assistance of a high-speed data acquisition card (PCIe-6321, National369

Instruments, US) to synchronize fluorescence and behavioral imaging.370

4.1.1 Behavior analysis. The background of each behavior video was removed using the clone stamp tool in Adobe371

Photoshop CS6. Individual images were then processed by an adaptive thresholding algorithm, and fish head and372

yolk were selected manually to determine the head orientation. The entire body centerline, extending from the head373

to the tail, was divided into 20 segments. The amplitude of a bending segment was defined as the angle between374

the segment and the head orientation. To distinguish the paramecium from a noisy environment, we subtracted a375

background image, averaged over a time window of 100 sec, from all frames. The major axis of left or right eye was376

identified using DeepLabCut (57). The eye orientation was defined as the angle between the rostrocaudal axis and377

the major axis of an eye; The convergence angle was defined as the angle between the major axes of left and right378

eyes.379

4.1.2 Imaging data acquisition and processing. We employed a fast eXtended Light-Field Microscope (XLFM, with a380

volume rate of 10 Hz) to record calcium activity across the brain of head-fixed larval zebrafish. Fish were ordered by381

the dates of experiments. As described previously (36), We adopted the Richardson-Lucy deconvolution method to382

iteratively reconstruct 3D fluorescence stacks (600 × 600 × 250) from the acquired 2D images (2048 × 2048). This383

algorithm requires an experimentally measured point spread function (PSF) of the XLFM system.384

385

To perform image registration and segmentation, we first cropped and resized the original image stack to386

400 x 308 x 210, which matched the size of a standard zebrafish brain atlas (zbb) (58). This step aimed to reduce387

substantial memory requirements and computational costs in subsequent operations. Next, we picked a typical388

volume frame and aligned it with the zbb atlas using a basic 3D affine transformation. This transformed frame was389

used as a template. We aligned each volume with the template using 3D intensity-based rigid registration (59) and390

pairwise non-rigid registration (60) in Computational Morphometry Toolkit (CMTK) (61). After voxel registration,391

We computed the pairwise correlation between nearby voxel intensities and performed watershed algorithm on the392

correlation map to cluster and segment voxels into consistent ROIs across all volumes. Finally, we adopted the393

"OASIS" deconvolution method to denoise and infer neural activity from the fluorescence time sequence (62). The394

deconvolved �F/F of each ROI was used to infer firing rates for subsequent analysis.395

4.2 Other experimental datasets396

To validate our findings across different recording methods and animal models, we also analyzed three additional397

datasets. We include a brief description below for completeness. Further details can be found in the respective398

reference. The first dataset includes whole-brain light-sheet calcium imaging of immobilized larval zebrafish in399

the presence of visual stimuli as well as in the spontaneous state(37). Each brain volume was scanned through400

2.11±0.21 planes per sec, providing a near-simultaneous readout of neurons’ calcium signals. We analyzed401

fish 8 (69207 neurons ◊ 7890 frames), 9 (79704 neurons ◊ 7720 frames) and 11 (101729 neurons ◊ 8528402

frames), which are the first three fish data having more than 7200 frames. For simplicity, we labeled them as403

l2, l3, and l1(fl). The second dataset consists of Neuropixels recordings from around ten different brain areas in404

mice during spontaneous behavior (31). The data from the three mice, Kerbs, Robbins, and Waksman, include405

the firing rate matrices of 1462 neurons ◊ 39053 frames, 2296 neurons ◊ 66409 frames, and 2688 neurons406

◊ 74368 frames, respectively. The last dataset comprises two-photon calcium imaging data (2-3 Hz) obtained407

from the visual cortex of mice during spontaneous behavior. While the dataset includes numerous animals,408

we focused on the first three animals that exhibited spontaneous behavior:spont_M150824_MP019_2016-04-05409

(11983 neurons ◊ 21055 frames), spont_M160825_MP027_2016-12-12 (11624 neurons ◊ 23259 frames), and410
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4.3 Covariance matrix and subsampled eigenspectrum

spont_M160907_MP028_2016-09-26 (9392 neurons ◊ 10301 frames) (31).411

4.3 Covariance matrix and subsampled eigenspectrum412

To begin, we multiply each neurons’ inferred firing rates (see section 4.1.2) by a constant such that in the resulting413

activity trace xi, the mean of xi over the nonzero frames is equal to one (32). Consistent with literature (32), the414

goal of this step is to remove potential confounding factors in the raw activity traces, such as the heterogeneous415

expression level of fluorescence protein within neurons, the nonlinear conversion of the electrical signal to calcium416

concentration, etc. Note that, after this scaling, neurons can still have different activity levels characterized by the417

variance of xi, due to differences in activity sparsity (proportion of nonzero frames) and distribution of nonzero xi418

values. For consistency, we used the same number of time frames T = 7200 when comparing CI across all datasets419

(Fig. 4, Fig. S4). For other cases (Fig. 1, Fig. 6, Fig. 7, Fig. S1, figures S7 to S11), we analyzed the full length of420

the data. Next, the covariance matrix was calculated as Cij = 1
T ≠1

qT
t=1 (xi(t)≠ x̄i)(xj(t)≠ x̄j), where x̄i is the421

mean of xi over time. Finally, to visualize covariance matrices on a common scale, we multiplied matrix C by a422

constant such that the average of its diagonal entries equals to one, i.e., Tr(C)/N = 1. This scaling does not alter423

the distribution of covariance eigenvalues but sets their mean to 1 (see Eq. (3), section 2.2).424

425

We used an iterative procedure to subsample the covariance matrix C (calculated from data or as simulated426

ERMs). To maintain consistency across datasets, we randomly chose N0 = 1024 neurons from each zebrafish427

dataset as the initial set of neurons (remain fixed for all analysis). In the first iteration, we randomly select half428

of the neurons. The covariance matrix for these selected neurons is a N
2 ◊ N

2 diagonal block of C. Similarly, the429

covariance matrix of the un-selected neurons is another diagonal block of the same size. In the next iteration, we430

similarly create two new subsampled blocks with half number of neurons for each of the blocks we currently have.431

Repeating this process for n iterations results in 2n blocks, each containing N := N0/2n neurons. At each iteration,432

the eigenvalues of each block was calculated and averaged after sorting in descending order. Finally, the averaged433

eigenvalues were plotted against rank/N on a log-log scale. To numerically compute the eigenvalue probability434

density function in our model, we generated ERM 100 times, each of which was subsampled using the method435

described above.436

437

To determine the overall power-law coefficient of the eigenspectra, –, throughout the subsampling, we fitted438

a straight line in the log-log rank plot to the large eigenvalues that combined the original and three-iterations of439

subsampled covariance matrices (select top 10% eigenvalues for each matrix and excluding the first four largest440

ones for each matrix). We averaged the estimated – over 10 repeats of the entire subsampling procedure. R
2 of the441

power-law fit was computed in a similar way.442

443

To visualize the statistical structures of the original and subsampled covariance matrices, the orders of the444

neurons (i.e., the columns and rows) are determined through the following algorithm. We first constructed a445

symmetric Toeplitz matrix T , whose entries Ti,j = ti≠j , and ti≠j © tj≠i. The vector t̨ = [t0, t1, . . . , tN≠1] is equal446

to the mean covariance vector of each neuron computed as below. Let c̨i be a row vector of the data covariance447

matrix, we identify t̨ = 1
N

qN
i=1 D(c̨i), where D(·) denotes a numerical ordering operator, namely to rearrange the448

elements in a vector c̨ such that c0 Ø c1 Ø . . . Ø cN≠1. The second step was to find a permutation matrix P such449

that ÎT ≠PCP
T ÎF is minimized, where Î ÎF denotes the Frobenius norm. This quadratic assignment problem was450

solved by simulated annealing. Note that after subsampling, the smaller matrix will appear different from the larger451

one. We need to perform the above re-ordering algorithm for every subsampled matrix such that the matrices of452

different sizes become similar in Fig. 1F.453

454

The composite covariance matrix with substituted eigenvectors in (Fig. 1H) was created in the following steps.455

First, we generate a random orthogonal matrix Ur (according to Haar measure) for the new eigenvectors. This456

is achieved through the QR decomposition A = UrR of a random matrix A with i.i.d. entries Aij ≥ N (0,1/N).457

Next, the composite covariance matrix Cr is defined as Cr := Ur�U
T
r , where � is a diagonal matrix containing the458

eigenvalues of C. Note that since, all the eigenvalues are real and Ur is orthogonal, the resulting Cr is a real and459

symmetric matrix. By construction, Cr and C have the same eigenvalues, but their subsampled eigenspectra can460

differ.461

4.4 ERM model462

We consider the eigenvalue distribution or spectrum of the matrix C in the limit of N ∫ 1 and L ∫ 1. This spectrum463

can be analytically calculated in both the high-density (fl ∫ 1) and intermediate-density (fl = O(1)) scenarios using464

the replica method (38). We provide below a sketch of our approach and the detailed derivations can be found in S2.465
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4.4 ERM model

To calculate the probability density function of the eigenvalues (or eigendensity), we first compute the resolvent or466

Stieltjes transform g(z) = ≠ 2
N ˆz

e
ln det(zI ≠C)≠1/2

f
, z œC. Here È...Í is the average across realizations of C (i.e.,467

random x̨i’s and ‡
2
i ’s). The relationship between the resolvent and the eigendensity is given by the Sokhotski-Plemelj468

formula:469

p(⁄) = ≠ 1
fi

lim
÷æ0+

Im g(⁄+ i÷), (6)

where Im means imaginary part.470

471

Here we follow the field-theoretic approach (38), which turns the problem of calculating the resolvent to a472

calculation of the partition function in statistical physics by using the the replica method. In the limit N æ Œ,473

L
d æ Œ, fl being finite, by performing a leading order expansion of the canonical partition function at large z (S2),474

we find the resolvent is given by475

g(z) = 1
fl

⁄ dd
k

(2fi)d

1
z ≠flE(‡2)f̃(k̨)

(7)

the eigendensity for fl ∫ 1 (Eq. (3)) can be derived from equations (6) and (7).476

477

In the intermediate density fl = O(1), an improved approximation can be derived using the Gaussian variational478

method (38). Unlike the high-density theory where the eigendensity has an explicit expression, here the resolvent479

g(z) no longer has an explicit expression and is given by the following equation480

g(z) =
K

1
z ≠‡2 s

Dk̨ G̃(k̨, z)

L

‡

, (8)

where È...Í‡ computes the expectation value of the term inside the bracket with respect to ‡, namely È...Í‡ ©481 s
...p(‡)d‡. Here and below, we denote

s
Dk̨ ©

s ddk̨
(2fi)d . The function G(k̨, z) is determined by a self-consistent482

equation,483

1
f̃(k̨)

= 1
G̃(k̨, z)

+
K

fl‡
2

z ≠‡2 s
Dk̨ G̃(k̨, z)

L

‡

(9)

We can solve
s

Dk̨ G(k̨, z) from Eq. (9) numerically and below is an outline and the details are explained in S2. Let484

us define the integral G ©
s

Dk̨ G̃(k̨, z). First, we substitute z © ⁄ + i÷ into Eq. (9), and write G = ReG + iImG.485

Eq. (9) can thus be decomposed into its real part and imaginary part, and a set of nonlinear and integral equations,486

each of which involves both ReG and ImG. We solve these equations in the limit ÷ æ 0 using a fixed-point iteration487

alternating between updating ReG and ImG until convergence.488

489

We find that the variational approximations exhibit an excellent agreement with the numerical simulation for490

both large and intermediate fl (for fl = 256 and fl = 10.24, Fig. 4E,F). To further elucidate the connection between491

the two different methods, we estimate the condition when the result of high-density theory (Eq. (3)) matches that of492

the variational method (equations (8) and (9)) (S2).493

494

Throughout the paper, we have mainly considered the particular kernel function f(x̨) = ‘
µ(‘2 + ÎxÎ2)≠µ/2

495

(Eq. (2), Fig. 2A, B). This approximate power-law f(x̨) has the advantage of having an analytical expression for its496

Fourier transform, which is crucial for the high-density theory (Eq. (3)),497

f̃(k̨) =
2 d≠µ+2

2 fi
d
2 k

µ≠d
2 ‘

µ+d
2 K(d≠µ)/2(k‘)

�(µ/2) , k = Îk̨Î (10)

Here K–(x) is the modified Bessel function of the second kind, and �(x) is the Gamma function. We calculated the498

above formulas for d = 1,2,3 with the assistance of Mathematica and conjectured the case for general dimension d,499

which we confirmed numerically for d Æ 10.500

501

We want to explain two technical points relevant to interpreting our numerical results and choice of f(x̨).502

Unlike the case in the usual ERM, here we allow f(x̨) to be non-integrable (over Rd), which is crucial to allow503

power-law f(x̨). The non-integrability violates a condition in classical convergence results of the ERM spectrum (63)504

as N æ Œ. We believe this is exactly the reason for the departure of the first few eigenvalues from our theoretical505

spectrum (e.g., in Fig. 2). Our hypothesis is also supported by simulations of ERM with integrable f(x̨) (Fig. S3),506
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4.5 Collapse index

where the numerical eigenspectrum matches closely with our theoretical one, including the leading eigenvalues.507

For ERM to be a legitimate model for covariance matrices, we need to ensure the resulting matrix C is positive508

semidefinite. By Bochner’s theorem (64), this is equivalent to the Fourier transform (FT) of kernel function f̃(k̨) to be509

non-negative for all frequencies. For example, in 1D, a rectangle function rect(x) =
I

1, if |x| Æ 1
2

0, otherwise
does not meet510

the condition (its FT is sinc(x) = sin(x)
x ), but a tent function tent(x) =

I
1≠ |x|, if |x| Æ 1
0, otherwise

does (its FT is sinc2(x)).511

For the particular kernel function f(x̨) in Eq. (2), this condition can be easily verified using the analytical expressions512

of its Fourier transform (Eq. (10)). The integral expression for K–(x), given as K–(x) =
s Œ

0 e
≠xcosht cosh(–t)dt,513

shows that K–(x) is positive for all x > 0. Likewise, the Gamma function �(x) > 0. So the Fourier transform of514

Eq. (2) is positive and the resulting matrix C (of any size and values of x̨i) is guaranteed to be positive definite.515

4.5 Collapse index516

In the definition of CI (Eq. (5)),517

CI := 1
log(q0/q1)

⁄ logq0

logq1

----
ˆ log⁄(q)

ˆ logfl

----dlogq,

we set q1 such that ⁄(q1) = 1, which is the mean of the eigenvalues of a normalized covariance matrix (see518

section 4.3). The other integration limit q0 is set to 0.01 such that ⁄(q0) is the 1% largest eigenvalue.519

4.5.1 A calculation of collapse index for experimental datasets/ERM model. To calculate CI for a covariance matrix520

C of size N0, we first computed its eigenvalues ⁄
0
i and those of the subsampled block Cs of size Ns = N0/2,521

denoted as ⁄
s
i (averaged over 20 different random subsamplings). Next, we estimated log⁄(q) using the eigenvalues522

of C0 and Cs at q = i/Ns, i = 1,2, . . . ,Ns. For the subsampled Cs, we simply had log⁄(q = i/Ns) = log⁄
s
i ,523

its i-th largest eigenvalue. For the original C0, log⁄(q = i/Ns) was estimated by a linear interpolation, on the524

log⁄-logq scale, using the value of log⁄(q) at nearest-neighboring q = i/N0’s (which again are simply log⁄
0
i ).525

Finally, the integral (Eq. (5)) was computed by the trapezoidal rule, discretized at q = i/Ns’s, using finite difference526

ˆ log⁄(q)
ˆ logfl ¥ 1

log(N0/Ns) |� log⁄(q)|, where � denotes the difference between the original eigenvalues of C0 and those527

of subsampled Cs.528

4.5.2 Estimating CI using the variational theory. We first numerically calculated a complementary cdf q(⁄), the inverse529

function of ⁄(q) in section 4.5.1, by integrating the probability density function p(⁄) from ⁄ to a finite ⁄(qs) rather530

than to infinity,531

q(⁄) =
⁄ Œ

⁄
p(⁄)d⁄ =

⁄ Œ

⁄(qs)
p(⁄)d⁄+

⁄ ⁄(qs)

⁄
p(⁄)d⁄ = qs +

⁄ ⁄(qs)

⁄
p(⁄)d⁄, (11)

where p(⁄) was computed by the variational method equations (8) and (9). The integration limit ⁄(qs) cannot be532

directly calculated using the variational theory, we thus use the high density theory value ⁄
h(qs = 1/N) as an533

approximation. In the intermediate density regime fl = O(1), since ⁄
h(qs = 1/N) deviates from the true ⁄(qs = 1/N),534

the theoretical CI estimated in this way results in a constant bias in Fig. 4B. Calculating ⁄(q) and ˆ log⁄(q)
ˆ logfl directly is535

difficult, but we can use implicit differentiation536

ˆ log⁄(q,fl)
ˆ logfl

= fl

⁄(q,fl)
ˆ⁄(q,fl)

ˆfl
= ≠ fl

⁄(q,fl)

ˆq(fl,⁄)
ˆfl

ˆq(fl,⁄)
ˆ⁄

(12)

and the integral in CI (Eq. (5)) can be rewritten as537

⁄ logq0

logq1

----
ˆ log⁄(q)

ˆ logfl

----dlogq =
⁄ q0

q1

-----≠
fl

q⁄(q)

ˆq
ˆfl
ˆq
ˆ⁄

-----dq =
⁄ ⁄(q0)

⁄(q1)

-----≠
fl

q⁄(q)

ˆq
ˆfl
ˆq
ˆ⁄

-----
ˆq

ˆ⁄
d⁄ =

⁄ ⁄(q1)

⁄(q0)

----
1

q⁄(q)
ˆq

ˆ logfl

----d⁄ (13)

Since ˆq
ˆ⁄ = ≠p(⁄) < 0, we switch the order of the integration interval in the final expression of Eq. (13).538

539

We next describe how each term inside the integral of Eq. (13) was numerically estimated. First, we calculated540
ˆq

ˆ logfl with a similar method described in section 4.5.1. Briefly, we calculated q0(⁄) for density fl0 = N0
Ld , and541

qs(⁄) for density fls = Ns
Ld , and then used the finite difference 1

log(fl0/fls) |�q(⁄)|. Second, we calculated q(⁄) using542

Eq. (11), where p(⁄,fl) was evaluated at logfl = 1
2 (logfl0 +log(sfl0)). Here s = Ns/N0, and fl0 is the original density543
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4.6 Extensions of ERM and factors not affecting the scale invariance

of ERM. Third, q(⁄) and ˆq(⁄)
ˆ logfl were evaluated at ⁄ = ⁄(q1) + i

⁄(q0)≠⁄(q1)
k≠1 , where i = 0,1,2, . . . ,k ≠ 1, and we used544

k = 20. Finally, we performed a cubic spline interpolation of the term 1
q

ˆq
ˆ logfl , and obtained the theoretical CI by545

an integration of Eq. (13). Fig. 4B shows a comparison between the theoretical CI and that obtained by numerical546

simulation of ERM (section 4.5.1).547

4.6 Extensions of ERM and factors not affecting the scale invariance548

In section 2.4 we considered five additional types of spatial density distributions (coordinate distributions)549

in the functional space and two additional functional space geometries. We examined points distributed550

according to uniform distribution (x̨ ≥ 1/L
d), normal distribution (x̨ ≥ N (µp,‡

2
pI)), and log-normal distribution551

(log x̨ ≥ N (µp,‡
2
pI)). We used the method described in section 4.7.1 to estimate the parameters of coordinate552

distributions such that they would generate similar pairwise correlation distributions. The relationships between553

these parameters are described in section 4.7.1. In Fig. 5B, we used the following parameters: d = 2; L = 10 for554

uniform distribution; µp = 0, ‡p = 2.82 for normal distribution; µp = 2, ‡p = 0.39 for log-normal distribution.555

556

Second, we introduced multiple clusters of neurons in the functional space, with each cluster uniformly distributed557

in a box. We considered three arrangements: (1) two closely situated clusters (with a box size of L = 5
Ô

2, the558

distance between two cluster centers being Lc = L), (2) two distantly situated clusters (with a box size of L = 5
Ô

2559

and inter-cluster distance Lc = 4L), and three clusters arrange symmetrically on a equilateral triangle (with a box560

size of L = 10/
Ô

3 and inter-cluster distance Lc = L).561

562

Finally, we examined the scenario in which points were uniformly distributed on the surface of either a sphere563

(4fil
2 = L

2, l being the sphere radius) or a hemisphere (2fil
2 = L

2) embedded in R3 (the pairwise distance is that564

in R3). It is noteworthy that both cases have the same surface area as the 2D box (section 2.4).565

4.7 Fitting ERM to data566

4.7.1 Estimating ERM parameters. Our ERM model has 4 parameters: µ, and ‘ dictates the kernel function f(x̨);567

the box size L and the embedding dimension d determine the neuronal density fl. In the following, we describe an568

approximate method to estimate these parameters from experimentally measured pairwise correlations Rij = Cij
‡i‡j

.569

We proceed by deriving a relationship between the probability density distribution of correlation h(R) and the570

probability density distribution of pairwise distances g(u) := g(Îx̨1 ≠ x̨2Î) in the functional space, from which the571

parameters of the ERM can be estimated.572

573

Let us consider a distribution of neurons in the functional space with a coordinate distribution p(x̨). The574

pairwise distance density function g(u) is related to the spatial point density by the following formula:575

g(u) =
⁄

p(x̨1)p(x̨2)”(Îx̨1 ≠ x̨2Î≠u)dx̨1dx̨2 (14)

In the case of uniform distribution, p(x̨1) = p(x̨2) = 1/V = 1/L
d. For other spatial distributions, Eq. (14) cannot be576

explicitly evaluated. We therefore make a similar approximation by focusing on a small pairwise distance (i.e., large577

correlation):578

p(x̨1) ¥ p(x̨2) ¥ p( x̨1 + x̨2
2 ) (15)

By a change of variables:579

X̨ = x̨1 + x̨2
2 , ų = x̨1 ≠ x̨2,

Eq. (14) can be rewritten as580

g(u) ¥
⁄

p
2(X̨)”(ÎųÎ≠u)dX̨dų = Sd(u)

⁄
p

2(X̨)dX̨
(16)

where Sd(u) is the surface area of d-sphere with radius u.581

582

With the approximate power-law kernel function R = f(u) ¥ ( ‘
u )µ, the probability density function of pairwise583
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4.8 Canonical-Correlation Analysis (CCA)

correlation h(R) is given by:584

h(R) = g(u)
----
du

dR

---- = (2fi) d
2 ‘

d

�(d
2 )µR(µ+d)/µ

⁄
p

2(X̨)dX̨ (17)

Taking the logarithm on both sides585

logh(R) = log
3

‘
d

⁄
p

2(X̨)dX̨

4
+log (2fi) d

2

�(d
2 )µ

≠ µ+d

µ
logR (18)

Eq. (18) is the key formula for ERM parameter estimate. In the case of uniform spatial distribution,586

‘
d

s
p

2(X̨)dX̨ = ‘
d
/V = (‘/L)d. For a given d, we therefore can estimate µ and (‘/L)d separately by fitting587

h(R) on the log-log scale using linear least square. ‘ and L are a pair of redundant parameters: once ‘ is given, L588

is also determined. We set ‘ = 0.03125 throughout the article.589

590

Notably, we found that a smaller embedding dimension d Æ 5 gave a better fit for the overall pairwise correlation591

distribution. Below is an empirical explanation. As d grows, to best fit the slope of logh(R) ≠ logR, µ would also592

grow. However, for very high dimension d, the y-intercept would become very negative, or equivalently the fitted593

correlation would become extremely small. This can be verified by examining the leading order logR-independent594

term in Eq. (18), which can be approximated as d log ‘
L + d

2
!
log2fi +1≠ log d

2
"
. It becomes very negative for large595

d since ‘ π L by construction. Throughout this article, we use d = 2 when fitting experimental data with our ERM596

model.597

598

The above calculation can be extended to cases when coordinate distribution p(x̨) becomes dependent upon599

other parameters. To estimate the parameters in coordinate distributions that can generate ERMs with similar600

pairwise correlation distribution (Fig. 5), we fixed the value of the integral
s

p
2(x̨)dx̨. Consider for example601

a transformation of uniform coordinate distribution to normal distribution N (µp = 0,‡
2
pI) in R2. We imposed602 s

p
2(x̨)dx̨ = 1/(4fi‡

2
p) = 1/L

2. For log-normal distribution, a similar calculation led to Lexp(‡2
p/4 ≠ µp) = 2Ô

fi‡p.603

Numerical values for these parameters can be found in section 4.6. Note, however, because of the approximation604

we used (Eq. (15)), our estimate of the ERM parameters becomes less accurate if the density function p(x̨) changes605

rapidly over a short distance in the functional space. More sophisticated methods, such as grid search, may be606

needed to tackle such a scenario.607

4.7.2 Multidimensional Scaling (MDS). With the estimated ERM parameters (µ in f(x̨) and the box size L for given608

‘ and d, see section 4.7.1), we performed MDS to infer neuronal coordinates x̨i in the functional space. First, we609

computed pairwise correlation Rij = Cij
‡i‡j

from data covariances. Next, we calculated the pairwise distance, denoted610

by u
ú
ij , by computing the inverse function of f(x̨) with respect to the absolute value of Rij , u

ú
ij = f

≠1(|Rij |). Finally,611

we estimated the embedding coordinates x̨i for each neuron by the SMACOF algorithm (Scaling by MAjorizing a612

COmplicated Function (65)), which minimizes the Sammon error613

E = 1q
i<j

uú
ij

ÿ

i<j

(uú
ij ≠uij)2

uú
ij

(19)

where uij = Îx̨i ≠ x̨jÎ is the pairwise distance in the embedding space calculated above.614

615

To reduce errors at large distances (i.e., small correlations with Rij < f(L), where L is estimated box size),616

we performed a soft cut-off at a large distance:617

u
ú
ij = f

≠1(|Rij |), Rij Ø f(L)
u

ú
ij = L log(f≠1(|Rij |)/L)+L, Rij < f(L)

(20)

During the optimization process, we started at the embedding coordinates estimated by the classical MDS (39), with618

an initial sum of squares distance error that can be calculated directly, and ended with an error or its gradient smaller619

than 10≠4.620
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4.8 Canonical-Correlation Analysis (CCA)

4.8 Canonical-Correlation Analysis (CCA)621

Here we briefly explain the CCA method (66) for completeness. The basis vectors ą1 and b̨1, in the functional and622

anatomical space, respectively, were found by maximizing the correlation RCCA = corr({ą1 · x̨i}, {̨b1 · y̨i}). Here623

{x̨i}, {y̨i} represent the coordinates in functional and anatomical spaces, respectively. The resulting maximum624

correlation is RCCA . To check the significance of the canonical correlation, we shuffled the neurons’ functional625

space coordinates {x̨i} across neurons’ identity, and re-calculated the canonical correlation with the anatomical626

coordinates, as shown in Fig. 6F.627

4.9 Removing neural activity data during hunting628

To identify and remove the time frames corresponding to putative hunting behaviors, the following procedure was629

used. The hunting interval was defined as from 10 frames (1 sec) preceding the onset of an eye convergence to 10630

frames after the offset of this eye convergence. These frames were then excluded from the data before re-calculating631

the covariance matrix and subsequently the subsampled eigenspectra (Fig. 7B, Fig. S10B,E). As a control to the632

hunting-frame removal, an equal number of time frames that are not within those hunting intervals were randomly633

selected and removed and then analyzed (Fig. 7C,Fig. S10C,F). The hunting interval frames and total recording634

frames for three fish exhibiting hunting behaviors were as follows: fish2 - 565/9774, fish1 - 268/7495, and fish3 -635

2734/13904. Fish 4 was not exposed to visual stimuli and therefore was excluded from the analysis.636

Code and data availability637

The source code and data used to produce all the figures will be available upon publication.638
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S1 Supplementary figures. S1 comprises 12 supplementary figures.640

S2 Supplementary text. S2 includes further details of theoretical calculations.641
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Supplementary figures (S1)798

Figure S1. The phenomenon of scale-invariant eigenspectra across different datasets. A-D. Distribution of normalized
pairwise covariances, where E(‡2

i ) = 1 (Methods). E-H. Subsampled covariance eigenspectra of different datasets. I-L. Pdfs of
subsampled covariance matrix eigenspectra of different datasets. The datasets correspond to the following: column 1: example
fish data (fish1) from whole brain light-field imaging; column 2: example fish data from whole brain light sheet imaging; column
3: example mouse data from multi-area Neuropixels recording; column 4: example mouse data from two-photon visual cortex
recording.
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Figure S2. Comparison between ERM simulation and theory. A-C. show rank plots of the normalized eigenspectra (⁄/fl), with
the simulations obtained using correlation matrix (sim: corr, ‡2

i = 1) and covariance matrix (sim: cov, neuron’s activity variance
‡2

i is i.i.d. sampled from a log-normal distribution with zero mean and a standard deviation of 0.5 in the natural logarithm of the
‡2

i values; we also normalize E(‡2
i ) = 1 (Methods)). The theoretical predictions of normalized eigenvalues ⁄/fl are obtained

using analytical (cyan) and numerical (gray) calculations of the Fourier transform. The density fl decreases from panel A to panel
C (fl = 1024,256,10.24 respectively). D-F. show numerical validation of the theoretical spectrum by comparing probability density
functions for increasing density of covariance ERM (fl = 1024,256,10.24 respectively). Other simulation parameters: N = 1024,
d = 2, L = (N/fl)

1/d, µ = 0.5, ‘ = 0.03125. The ERM simulations wereconducted 100 times. The results are presented as the
mean ± SEM.
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Figure S3. Covariance spectra under other kernel functions f(x̨). The figure presents both the subsampled eigenvalue rank
plot and the pdf of ERM with different functions f(x̨) and varying dimensions d, where panels A-D,I,J. display the rank plot and

panels E-H,K,L. show the pdf of ERM. A,E. Exponential function f(x̨) = e≠ ÎxÎ
2b and dimension d = 2. B,F. Exponential function

f(x̨) = e≠ ÎxÎ
2b and dimension d = 3. C,G. Gaussian pdf f(x̨) = e

≠ ÎxÎ2

2‡2
x and dimension d = 2. D,H. Gaussian pdf f(x̨) = e

≠ ÎxÎ2

2‡2
x

and dimension d = 3. I,K. t pdf Eq. (2) and dimension d = 2. J,L. t pdf Eq. (2) and dimension d = 3. The ERM simulations were
conducted 100 times and each ERM uses an identical subsampling technique described in (Methods). The results represent
mean ± SEM. M. Summary of CI’s for different f(x̨) and d.
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Figure S4. Impact of heterogeneous activity levels on the scale invariance. A. The CI as a function of the heterogeneity
of neural activity levels E(‡4

i ). We generate ERM where each neuron’s activity variance ‡2
i is i.i.d. sampled from a log-normal

distribution, with the same parameters as in Fig. 4B. The solid blue line is the average across 100 ERM simulations, and the
shaded area represents SD. Red line is the result from the Gaussian variational theory. fl0 = 128. B. Same as A, but with a
smaller fl0 = 10.24. Other parameters: µ = 0.5, d = 2, N = 1024, L = (N/fl)

1/d, ‘ = 0.03125. C. Comparison of the collapse
index between experimental data and shuffled data, red: collapse index of experimental data, blue: collapse index distribution of
shuffled data. datasets: f1 to f4: four light-field zebrafish data (10 Hz per volume, Methods); l1 (fl) to l3: light-sheet zebrafish data
(2 Hz per volume); n1 (mn) to n3: Neuropixels mouse data, 30 Hz downsample to 10 Hz per volume, p1 (mp) to p3: two-photon
mouse data, (3 Hz per volume). D. The collapse index (CI) of the correlation matrix (filled symbols) is larger than that of the
covariance matrix (opened symbols) across different datasets excluding those shown in Fig. 4. We use 7200 time frames data
across all datasets.
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Figure S5. Modifications f(x̨) near x = 0 other than the t pdf (Eq. (2)) The first row illustrates the slow-decaying kernel
function f(x̨) (blue solid line) and its power-law asymptote (red dashed line) along a 1D slice at various f(x̨). The second row is
similar to A, but on the log-log scale.

Figure S6. Comparisons of large eigenvalues across different smoothing interval sizes, ‘. Rank plot (first row) and pdf
(second row) of the covariance eigenspectrum for ERMs with different f(x̨) (see table S2). A. ‘ = 0.06. B. ‘ = 0.12. C. ‘ = 0.3.
D. ‘ = 0.6. Other ERM simulation parameters: N = 4096, fl = 100, µ = 0.5, d = 2, L = 6.4, ‡2

i = 1.
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Figure S7. Fitting ERM to all four zebrafish data from our experiments (part1). Comparison of subsampled eigenspectrum
and covariance matrix between fish data and fitted model. The columns correspond to four light-field zebrafish data: fish 1 to
fish 4 (with fish 4 has been shown in Fig. 6). A-D. Subsampled covariance eigenspectra of different fish data. E-H. Subsampled
covariance eigenspectra of model fitted from different fish data. I-L. Covariance matrix of different fish data. M-P. Covariance
matrix of model inferred from different fish data.
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Figure S8. Fitting ERM to all four zebrafish data from our experiments (part2). Similar to Fig. S7, columns correspond to
four light-field zebrafish data: fish 1 to fish 4. A-D: Comparison of the power-law kernel function f(x̨) in the model (blue line) and
the correlation-distance relationship in the data (red line). The distance is calculated from the inferred coordinates using MDS.
The shaded area represents SD. E-H: Same as A-D but on the log-log scale. I-L: CCA correlation between the first CCA variables
with different embedding dimensions in the functional space. Blue indicates CCA correlation of example fish data, green shows
CCA correlation of example fish data with shuffled functional coordinates, and error bar represents SD.
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Figure S9. Relationship between the functional space and anatomical space for each zebrafish dataset from our
experiments. Columns correspond to four light-field zebrafish data: fish 1 to fish 4. A-D. Distribution of neurons in the functional
space, where each neuron is color-coded by the projection of its coordinate along the canonical axis b̨1 in anatomical space (see
text in section 2.5). Arrow: the first CCA direction ą1 in functional space. E-H. Distribution of neurons in the anatomical space,
where each neuron is color-coded by the projection of its coordinate along the canonical axis ą1 in functional space (see text in
section 2.5). Arrow: the first CCA direction b̨1 in anatomical space.
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Figure S10. Removing the time segment of prey capture behavior does not obliterate the scale-invariant eigenspectra.
Subsampled eigenspectra of other fish data. The first row represents fish 1 and the second row represents fish 3. A,B. Full data:
using the entire recording time frames to calculate the covariance matrix. C,D. Hunting removed: data obtained by removing
hunting frames from the full data (Methods). E,F. Ctrl: similar to A or B, but we randomly remove the same number of time frames
as in C or D that are not from putative hunting frames.

Figure S11. Negative covariances do not affect the eigenspectrum of the zebrafish data. Red: eigenspectrum of original
data covariance matrix. Blue: eigenspectrum of the covariance matrix with negative entries replaced by zeros.
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