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Abstract Understanding neural activity organization is vital for deciphering brain function. By14

recording whole-brain calcium activity in larval zebrafish during hunting and spontaneous15

behaviors, we find that the shape of the neural activity space, described by the neural covariance16

spectrum, is scale-invariant: a smaller, randomly sampled cell assembly resembles the entire17

brain. This phenomenon can be explained by Euclidean Random Matrix theory, where neurons18

are reorganized from anatomical to functional positions based on their correlations. Three19

factors contribute to the observed scale invariance: slow neural correlation decay, higher20

functional space dimension, and neural activity heterogeneity. In addition to matching data from21

zebrafish and mice, our theory and analysis demonstrate how the geometry of neural activity22

space evolves with population sizes and sampling methods, thus revealing an organizing23

principle of brain-wide activity.24

25

Introduction26

Geometric analysis of neuronal population activity has revealed the fundamental structures of neu-27

ral representations and brain dynamics Churchland et al. (2012); Zhang et al. (2023); Kriegeskorte28

and Wei (2021); Chung and Abbott (2021). Dimensionality reduction methods, which identify col-29

lective or latent variables in neural populations, simplify our view of high-dimensional neural data30

Cunningham and Yu (2014). Their applications to optical and multi-electrode recordings have be-31

gun to reveal important mechanisms by which neural cell assemblies process sensory information32

Stringer et al. (2019a); Si et al. (2019), make decisionsMante et al. (2013); Yang et al. (2022), main-33

tain working memory Xie et al. (2022) and generate motor behaviors Churchland et al. (2012);34

Nguyen et al. (2016); Lindén et al. (2022); Urai et al. (2022).35

36

In the past decade, the number of neurons that can be simultaneously recorded in vivo has grown37

exponentially Buzsáki (2004); Ahrens et al. (2012); Jun et al. (2017); Stevenson and Kording (2011);38

Nguyen et al. (2016); Sofroniew et al. (2016); Lin et al. (2022);Meshulam et al. (2019); Demas et al.39

(2021). This increase spans various brain regions Musall et al. (2019); Stringer et al. (2019a); Jun40

et al. (2017) and the entire mammalian brain Stringer et al. (2019b); Kleinfeld et al. (2019). As41
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more neurons are recorded, the multidimensional neural activity space, with each axis represent-42

ing a neuron’s activity level (Figure 1A), becomes more complex. The changing size of observed43

cell assemblies raises a number of basic questions. How does this space’s geometry evolve and44

what structures remain invariant with increasing number of neurons recorded? A key measure,45

the effective dimension or participation ratio (denoted as 𝐷PR, Figure 1B), captures a major part of46

variability in neural activity Recanatesi et al. (2019); Litwin-Kumar et al. (2017); Gao et al. (2017);47

Clark et al. (2023); Dahmen et al. (2020). How does 𝐷PR vary with the number of sampled neurons48

(Figure 1A)? Two scenarios are possible: 𝐷PR grows continuously with more sampled neurons; 𝐷PR49

saturates as the sample size increases. Which scenario fits the brain? Furthermore, even if two cell50

assemblies have the same 𝐷PR, they can have different shapes (the geometric configuration of the51

neural activity space, as dictated by the eigenspectrum of the covariance matrix, Figure 1C). How52

does the shape vary with the number of neurons sampled? Lastly, are we going to observe the53

same picture of neural activity space when using different recording methods such as two-photon54

microscopy, which records all neurons in a brain region, versus Neuropixels Jun et al. (2017), which55

conducts a broad random sampling of neurons?56

57

Here, we aim to address these questions by analyzing brain-wide Ca2+ activity in larval zebrafish58

during hunting or spontaneous behavior (Figure 2A) recorded by Fourier light-field microscopy59

Cong et al. (2017). The small size of this vertebrate brain, together with the volumetric imaging60

method, enables us to capture a significant amount of neural activity across the entire brain si-61

multaneously. To characterize the geometry of neural activity beyond its dimensionality 𝐷PR, we62

examine the eigenvalues or spectrum of neural covariance Hu and Sompolinsky (2022) (Figure 1C).63

The covariance spectrum has been instrumental in offering mechanistic insights into neural circuit64

structure and function, such as the effective strength of local recurrent interactions and the de-65

piction of network motifs Hu and Sompolinsky (2022); Morales et al. (2023); Dahmen et al. (2020).66

Intriguingly, we find that both the dimensionality and covariance spectrum remain invariant for cell67

assemblies that are randomly selected from various regions of the zebrafish brain. We also ver-68

ify this observation in datasets recorded by different experimental methods, including light-sheet69

imaging of larval zebrafish Chen et al. (2018), two-photon imaging of mouse visual cortex Stringer70

et al. (2019b), and multi-area Neuropixels recording in the mouse Stringer et al. (2019b). To ex-71

plain the observed phenomenon, we model the covariance matrix of brain-wide activity by gener-72

alizing the Euclidean Random Matrix (ERM) Mézard et al. (1999) such that neurons correspond to73

points distributed in a 𝑑-dimensional functional or feature space, with pairwise correlation decay-74

ing with distance. The ERM theory, studied in theoretical physics Mézard et al. (1999); Goetschy75

and Skipetrov (2013), provides extensive analytical tools for a deep understanding of the neural co-76

variance matrix model, allowing us to unequivocally identify three crucial factors for the observed77

scale invariance.78

79

Building upon our theoretical results, we further explore the connection between the spatial ar-80

rangement of neurons and their locations in functional space, which allows us to distinguish among81

three sampling approaches: random sampling, anatomical sampling (akin to optical recording of82

all neurons within a specific region of the brain) and functional sampling Meshulam et al. (2019).83

Our ERM theory makes distinct predictions regarding the scaling relationship between dimension-84

ality and the size of cell assembly, as well as the shape of covariance eigenspectrum under various85

sampling methods. Taken together, our results offer a new perspective for interpreting brain-wide86

activity and unambiguously show its organizing principles, with unexplored consequences for neu-87

ral computation.88
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Figure 1. The relationship between the geometric properties of the neural activity space and the size
of neural assemblies. A. Illustration of how dimensionality of neural activity (𝐷PR) changes with the numberof recorded neurons. B. The eigenvalues of the neural covariance matrix dictate the geometrical
configuration of the neural activity space with√

𝜆𝑖 being the distribution width along a principal axis. C.Examples of two neural populations with identical dimensionality (𝐷PR = 25∕11 ≈ 2.27) but different spatialconfigurations, as revealed by the eigenvalue spectrum (green: {𝜆𝑖} = {7, 7, 1}, blue: {𝜆𝑖} = {9, 3, 3}).
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Results89

Geometry of neural activity across random cell assemblies in zebrafish brain90

We recorded brain-wide Ca2+ activity at a volume rate of 10 Hz in head-fixed larval zebrafish (Fig-91

ure 2A) during hunting attempts (Methods) and spontaneous behavior using a Fourier light field92

microscopy Cong et al. (2017). Approximately 2000 ROIs (1977.3 ± 677.1, mean ± SD) with a diam-93

eter of 16.84 ± 8.51 µmwere analyzed per fish based on voxel activity (Methods). These ROIs likely94

correspond to multiple nearby neurons with correlated activity. Henceforth, we refer to the ROIs95

as "neurons" for simplicity.96

97

We first investigate the dimensionality of neural activity 𝐷PR (Figure 1B) in a randomly chosen cell98

assembly in zebrafish, similar to multi-area Neuropixels recording in a mammalian brain. We fo-99

cus on how 𝐷PR changes with a large sample size 𝑁 . We find that if the mean squared covariance100

remains finite instead of vanishing with𝑁 , the dimensionality𝐷PR (Figure 1B) becomes sample size101

independent and depends only on the variance 𝜎2
𝑖 and the covariance 𝐶𝑖𝑗 between neurons 𝑖 and102

𝑗:103

lim
𝑁→∞

𝐷PR =
E(𝜎2

𝑖 )
2

E𝑖≠𝑗(𝐶2
𝑖𝑗)
, (1)

where E(...) denotes average across neurons (Methods and Dahmen et al. (2020)). The finite mean104

squared covariance condition is supported by the observation that the neural activity covariance105

𝐶𝑖𝑗 is positively biased and widely distributed with a long tail (Appendix 1—figure 2A). As predicted,106

the data dimensionality growswith sample size and reaches themaximumvalue specified by eq. (1)107

(Figure 2D).108

109

Next, we investigate the shape of the neural activity space described by the eigenspectrum of110

the covariance matrix derived from the activity of𝑁 randomly selected neurons (Figure 2C). When111

the eigenvalues are arranged in descending order and plotted against the normalized rank 𝑟∕𝑁 ,112

where 𝑟 = 1,… , 𝑁 , (we refer to it as the rank plot), this curve shows an approximate power law that113

spans 10 folds. Interestingly, as the size of the covariance matrices decreases (𝑁 decreases), the114

eigenspectrum curves nearly collapse over a wide range of eigenvalues. This pattern holds across115

diverse datasets and experimental techniques (Figure 2F, Appendix 1—figure 2E-L). The similarity116

of the covariance matrices of randomly sampled neural populations can be intuitively visualized117

(Figure 2E), after properly sorting the neurons (Methods).118

119

The scale invariance in the neural covariance matrix – the collapse of the covariance eigenspec-120

trum under random sampling – is non-trivial. The spectrum is not scale-invariant in a common121

covariance matrix model based on independent noise (Figure 2G). It is absent when replacing the122

neural covariance matrix eigenvectors with random ones, keeping the eigenvalues identical (Fig-123

ure 2H). A recurrent neural network with random connectivity Hu and Sompolinsky (2022) does124

not yield a scale-invariant covariance spectrum (Figure 2I). A recently developed latent variable125

model Morrell et al. (2024) (Appendix 1—figure 23), which is able to reproduce avalanche critical-126

ity, also fails to generate the scale-invariant covariance spectrum. Thus, a newmodel is needed for127

the covariance matrix of neural activity.128

Modeling covariance by organizing neurons in functional space129

Dimension reduction methods simplify and visualize complex neuron interactions by embedding130

them into a low-dimensional map, within which nearby neurons have similar activities. Inspired131

by these ideas, we use the Euclidean Random Matrix (ERM Mézard et al. (1999)) to model neural132

covariance. Imagine sprinkling neurons uniformly distributed on a 𝑑-dimensional functional space133

of size 𝐿 (Figure 3A), where the distance between neurons 𝑖 and 𝑗 affects their correlation. Let134

𝑥⃗𝑖 represent the functional coordinate of the neuron 𝑖. The distance-correlation dependency is135
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Figure 2. Whole-brain calcium imaging of zebrafish neural activity and the phenomenon of its
scale-invariant covariance eigenspectrum. A. Rapid light-field Ca2+ imaging system for whole brain neuralactivity in larval zebrafish. B. Inferred firing rate activity from the brain-wide calcium imaging. The ROIs aresorted by their weights in the first principal component Stringer et al. (2019b). C. Procedure of calculating thecovariance spectrum on the full and sampled neural activity matrices. D. Dimensionality (circles, averageacross 8 samplings (dots)), as a function of the sampling fraction. The curve is the predicted dimensionalityusing eq. (5). E. Iteratively sampled covariance matrices. Neurons are sorted in each matrix to maximizevalues near the diagonal. F. The covariance spectra, i.e., eigenvalue vs. rank/N, for randomly sampledneurons of different sizes (colors). The gray dots represent the sorted variances 𝐶𝑖𝑖 of all neurons. G to I.Same as F but from three models of covariance (see details in Methods): (G) a Wishart random matrixcalculated from a random activity matrix of the same size as the experimental data; (H) replacing theeigenvectors by a random orthogonal set; (I) covariance generated from a randomly connected recurrentnetwork. The collapse index (CI), which quantifies the level of scale-invariance in the eigenspectrum (seeMethods), is: (G) CI = 0.214; (H) CI = 0.222; (I) CI = 0.139.
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described by kernel function 𝑓 (𝑥⃗𝑖 − 𝑥⃗𝑗) > 0 with 𝑓 (0) = 1, indicating closer neurons have stronger136

correlations, and decreases as distance ‖𝑥⃗𝑖 − 𝑥⃗𝑗‖ increases (Figure 3A and Methods). To model the137

covariance, we extend the ERM by incorporating heterogeneity of neuron activity levels (shown as138

the size of the neuron in the functional space in Figure 3A)139

𝐶𝑖𝑗 = 𝜎𝑖𝜎𝑗𝑓 (𝑥⃗𝑖 − 𝑥⃗𝑗), 𝑖, 𝑗 = 1, 2,… , 𝑁. (2)
The variance of neural activity 𝜎2

𝑖 is drawn i.i.d. from a given distribution and is independent of140

neurons’ position.141

142

Thismultidimensional functional spacemay represent attributes to which neurons are tuned, such143

as sensory features (e.g., visual orientationHubel andWiesel (1959), auditory frequency) andmove-144

ment characteristics (e.g., direction, speed Stefanini et al. (2020); Kropff et al. (2015)). In sensory145

systems, it represents stimuli as neural activity patterns, with proximity indicating similarity in fea-146

tures. For motor control, it encodes movement parameters and trajectories. In the hippocampus,147

it represents the place field of a place cell, acting as a cognitive map of physical space O’Keefe148

(1976);Moser et al. (2008); Tingley and Buzsáki (2018).149

150

151

Figure 3. ERMmodel of covariance and its eigenspectrum. A. Schematic of the Euclidean Random Matrix(ERM) model, which reorganizes neurons (circles) from the anatomical space to the functional space (here
𝑑 = 2 is a two-dimensional box). The correlation between a pair of neurons decreases with their distance inthe functional space according to a kernel function 𝑓 (𝑥⃗). This correlation is then scaled by neurons’ variance
𝜎2𝑖 (circle size) to obtain the covariance 𝐶𝑖𝑗 . B. An example ERM correlation matrix (i.e., when 𝜎2𝑖 ≡ 1). C.Spectrum (same as Figure 2F) for the ERM correlation matrix in B. The gray dots represent the sortedvariances 𝐶𝑖𝑖 of all neurons (same as in Figure 2F). D. Visualizing the distribution of the same ERM eigenvaluesin C by plotting the probability density function (pdf).

We first explore the ERM with various forms of 𝑓 (𝑥⃗) and find that fast-decaying functions like152

Gaussian and exponential functions do not produce eigenspectra similar to the data and no scale153

invariance over randomsampling (Appendix 1—figure 4A-H andAppendix 2). Thus, we turn to slow-154
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decaying functions including the power law, which produce spectra similar to the data (Figure 3C,D;155

see also Appendix 1—figure 5). We adopt a particular kernel function because of its closed-form156

and analytical properties: 𝑓 (𝑥⃗) = 𝜖𝜇(𝜖2 + ‖𝑥⃗‖2)−𝜇∕2 (Methods). For large distance ‖𝑥⃗‖ ≫ 𝜖, it ap-157

proximates a power law 𝑓 (𝑥⃗) ≈ 𝜖𝜇‖𝑥⃗‖−𝜇 and smoothly transitions at small distance to satisfy the158

correlation requirement 𝑓 (0) = 1 (Appendix 1—figure 7I, J).159

Analytical theory on the conditions of scale invariance in ERM160

To determine the conditions for scale invariance in ERM, we analytically calculate the eigenspec-161

trum of covariance matrix 𝐶 (eq. (2)) for large 𝑁,𝐿 using the replica method Mézard et al. (1999).162

A key order parameter emerging from this calculation is the neuron density 𝜌 ∶= 𝑁∕𝐿𝑑 . In the163

high-density regime 𝜌𝜖𝑑 ≈ 1, the covariance spectrum can be approximated in a closed form (Meth-164

ods). For the slow-decaying kernel function 𝑓 (𝑥⃗) defined above, the spectrum for large eigenvalues165

follows a power law (Appendix 2):166

𝜆 ∼ (𝑟∕𝑁)−1+
𝜇
𝑑 𝜌

𝜇
𝑑 ,

and equivalently 𝑝(𝜆) ∼ 𝜌
𝜇
𝑑−𝜇 𝜆−

2𝑑−𝜇
𝑑−𝜇 ,

(3)

where 𝑟 is the rank of the eigenvalues in descending order and 𝑝(𝜆) is their probability density func-167

tion. Equation (3) intuitively explains the scale invariance over random sampling. Sampling in the168

ERM reduces the neuron density 𝜌. The eigenspectrum is 𝜌-independent whenever 𝜇∕𝑑 ≈ 0. This169

indicates two factors contributing to the scale invariance of the eigenspectrum. First, a small ex-170

ponent 𝜇 in the kernel function 𝑓 (𝑥⃗)means that pairwise correlations slowly decay with functional171

distance and can be significantly positive across various functional modules and throughout the172

brain. For a given 𝜇, an increase in dimension 𝑑 improves the scale invariance. The dimension 𝑑173

could represent the number of independent features or latent variables describing neural activity174

or cognitive states.175

176

We verify our theoretical predictions by comparing sampled eigenspectra in finite-size simulated177

ERMs across different 𝜇 and 𝑑 (Figure 4A). We first consider the case of homogeneous neurons178

(𝜎2
𝑖 ≡ 1 in eq. (2), revisited later) in these simulations (Figure 3C, D and Figure 4A), making 𝐶 ’s en-179

tries correlation coefficients. To quantitatively assess the level of scale invariance, we introduce180

a collapse index (CI, see Methods for a detailed definition). Motivated by eq. (3), the CI measures181

the shift of the eigenspectrum when the number of sampled neurons changes. The smaller CI val-182

ues indicate higher scale invariance. Intuitively, it is defined as the area between spectrum curves183

from different sample sizes (Figure 4A upper right). In the log-log scale rank plot, eq. (3) shows the184

spectrum shifts vertically with 𝜌. Thus, we define CI as this average displacement (Figure 4A upper185

right, Methods), and a smaller CI means more scale-invariant. Using CI, Figure 4A shows that scale186

invariance improves with slower correlation decay as 𝜇 decreases and the functional dimension 𝑑187

increases. Conversely, with large 𝜇 and small 𝑑, the covariance eigenspectrum varies significantly188

with scale (Figure 4A).189

190

Next, we consider the general case of unequal neural activity levels 𝜎2
𝑖 and check for differences191

between the correlation (equivalent to 𝜎2
𝑖 ≡ 1) and covariance matrix spectra. Using the collapsed192

index (CI), we compare the scale invariance of the two spectra in the experimental data. Intriguingly,193

the CI of the covariancematrix is consistently smaller (more scale-invariant) across all datasets (Fig-194

ure 4C, Appendix 1—figure 6C, open vs. closed squares), indicating that the heterogeneity of neu-195

ronal activity variances significantly affects the eigenspectrum and the geometry of neural activity196

space Tian et al. (2024). By extending our spectrum calculation to the intermediate density regime197

𝜌𝜖𝑑 ≪ 1 (Methods), we show that the ERM model can quantitatively explain the improved scale198

invariance in the covariance matrix compared to the correlation matrix (Appendix 1—figure 6B).199

200
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Figure 4. Three factors contributing to scale invariance. A. Impact of 𝜇 and 𝑑 (see text) on the scaleinvariance of ERM spectrum (same plots as Figure 3C) with 𝑓 (𝑥⃗) = 𝜖𝜇(𝜖2 + ‖𝑥⃗‖2)−𝜇∕2. The degree of scaleinvariance is quantified by the collapse index (CI), which essentially measures the area between differentspectrum curves (upper right inset). For comparison, we fix the same coordinate range across panels hencesome plots are cropped. The gray dots represent the sorted variances 𝐶𝑖𝑖 of all neurons (same as in Figure 2F).
B. Top: sampled correlation matrix spectrum in an example animal (fish 1). Bottom: Same as top but for thecovariance matrix that incorporates heterogeneous variances. The gray dots represent the sorted variances
𝐶𝑖𝑖 of all neurons (same as in Figure 2F). C. The CI of the correlation matrix (filled squares) is found to belarger than that for the covariance matrix (opened squares) across different datasets: f1 to f6: six light-fieldzebrafish data (10 Hz per volume, this paper); fl: light-sheet zebrafish data (2 Hz per volume, Chen et al.(2018)); mn: mouse Neuropixels data (downsampled to 10 Hz per volume); mp: mouse two-photon data, (3 Hzper volume, Stringer et al. (2019b)).

8 of 92



Lastly, we examine factors that turn out to have minimal impact on the scale invariance of the201

covariance spectrum. First, the shape of the kernel function 𝑓 (𝑥⃗) over a small distance (small dis-202

tance means f(x) near x = 0 in the functional space, Appendix 1—figure 7) does not affect the distri-203

bution of large eigenvalues (Appendix 1—figure 7, table 3, Appendix 1—figure 9A). This supports204

our use of a specific 𝑓 (𝑥⃗) to represent a class of slow-decaying kernels. Second, altering the spatial205

distribution of neurons in the functional space, whether using a Gaussian, uniform, or clustered206

distribution, does not affect large covariance eigenvalues, except possibly the leading ones (Ap-207

pendix 1—figure 9B, Methods). Third, different geometries of the functional space, such as a flat208

square, a sphere, or a hemisphere, result in eigenspectra similar to the original ERM model (Ap-209

pendix 1—figure 9C). These findings indicate that our theory for the covariance spectrum’s scale210

invariance is robust to various modeling details.211

Connection among random sampling, functional sampling, and anatomical sam-212

pling213

So far, we have focused on random sampling of neurons, but how does the neural activity space214

changewith different samplingmethods? To this end, we consider threemethods (Figure 5A1): ran-215

dom sampling (RSap), anatomical sampling (ASap) where neurons in a brain region are captured216

by optical imaging Grewe and Helmchen (2009); Gauthier and Tank (2018); Stringer et al. (2019a),217

and functional sampling (FSap) where neurons are selected based on activity similarity Meshu-218

lam et al. (2019). In ASap or FSap, sampling involves expanding regions of interest in anatomical219

space or functional space while measuring all neural activity within those regions (Methods). The220

difference among sampling methods depends on the neuron organization throughout the brain.221

If anatomically localized neurons also cluster functionally (Figure 5A4), ASap ≈ FSap; if they are222

spread in the functional space (Figure 5A2), ASap ≈ RSap. Generally, the anatomical-functional re-223

lationship is in-between and can be quantified using the Canonical Correlation Analysis (CCA). This224

technique finds axes (CCA vectors 𝑣anat and 𝑣func) in anatomical and functional spaces such that the225

neurons’ projection along these axes has the maximum correlation, 𝑅CCA. The extreme scenarios226

described above correspond to 𝑅CCA = 1 and 𝑅CCA = 0.227

228

To determine the anatomical-functional relationship in neural data, we infer the functional coor-229

dinates 𝑥⃗𝑖 of each neuron by fitting the ERM using multidimensional scaling (MDS) Cox and Cox230

(2000) (Methods). For simplicity and better visualization, we use a low-dimensional functional space231

where 𝑑 = 2. The fitted functional coordinates confirm the slow decay kernel function in ERM ex-232

cept for a small distance (Appendix 1—figure 12). The ERM with inferred coordinates 𝑥⃗𝑖 also re-233

produces the experimental covariance matrix, including cluster structures (Appendix 1—figure 11)234

and its sampling eigenspectra (Appendix 1—figure 10).235

236

Equipped with the functional and anatomical coordinates, we next use CCA to determine which237

scenarios illustrated in Figure 5A align better with the neural data. Figure 5B,C shows a representa-238

tive fish with a significant 𝑅CCA = 0.327 (p-value=0.0042, Anderson–Darling test). Notably, the CCA239

vector in the anatomical space, 𝑣anat, aligns with the rostrocaudal axis. Coloring each neuron in240

the functional space by its projection along 𝑣anat shows a correspondence between clustering and241

anatomical coordinates (Figure 5B). Similarly, coloring neurons in the anatomical space (Figure 5C)242

by their projection along 𝑣func reveals distinct localizations in regions like the forebrain and optic243

tectum. Across animals, functionally clustered neurons show anatomical segregation Chen et al.244

(2018), with an average 𝑅CCA of 0.335±0.054 (mean±SD).245

246

Next, we investigate the effects of different sampling methods (Figure 5A1) on the geometry of the247

neural activity space when there is a significant but moderate anatomical-functional correlation as248

in the experimental data. Interestingly, dimensionality 𝐷ASap
PR in data under anatomical sampling249

consistently falls between random and functional sampling values (Figure 5D). This phenomenon250
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Figure 5. The relationship between the functional and anatomical space and theoretical predictions.
A. Three sampling methods (A1) and 𝑅CCA (see text). When 𝑅CCA ≈ 0 (A2), the anatomical sampling (ASap)resembles the random sampling (RSap), and while when 𝑅CCA ≈ 1 (A4), ASap is similar to the functionalsampling (FSap). B. Distribution of neurons in the functional space inferred by MDS. Each neuron iscolor-coded by its projection along the first canonical direction 𝑣anat in the anatomical space (see text). Databased on fish 6, same for C to E. C. Similar to B. but plotting neurons in the anatomical space with color basedon their projection along 𝑣func in the functional space (see text). D. Dimensionality (𝐷PR) across samplingmethods: average 𝐷PR under RSap (circles), average and individual brain region 𝐷PR under ASap (squares anddots), and 𝐷PR under FSap for the most correlated neuron cluster (triangles; Methods). Dashed and solid linesare theoretical predictions for 𝐷PR under RSap and FSap, respectively (Methods). E. The CI of correlationmatrices under three sampling methods in 6 animals (colors). **p<0.01; ***p<0.001; one-sided paired t tests:RSap vs. ASap, p = 0.0010; RSap vs. FSap, p = 0.0004; ASap vs. FSap, p = 0.0014.
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can be intuitively explained by the ERM theory. Recall that for large 𝑁 , the key term in eq. (1) is251

E𝑖≠𝑗(𝐶2
𝑖𝑗). For a fixed number of sampled neurons, this average squared covariance is maximized252

when neurons are selected closely in the functional space (FSap) and minimized when distributed253

randomly (RSap). Thus, RSap and FSap𝐷PR set the upper and lower bounds of dimensionality, with254

ASap expected to fall in between. This reasoning can be precisely formulated to obtain quantitative255

predictions of the bounds (Methods). We predict the ASap dimension at large 𝑁 as256

𝐷ASap
PR ≈ (1 − 𝑅2ASap + 𝑘2𝑅2ASap)𝜇∕𝑑𝐷PR. (4)

Here 𝐷PR is the dimensionality under RSap (eq. (1)), 𝑘 represents the fraction of sampled neurons.257

𝑅ASap is the correlation between anatomical and functional coordinates along the direction where258

the anatomical subregions are divided (Methods), and it is bounded by the canonical correlation259

𝑅ASap ≤ 𝑅CCA. When 𝑅ASap = 0, we get the upper bound 𝐷ASap
PR = 𝐷PR (Figure 5D dashed line). The260

lower bound is reached when 𝑅ASap = 𝑅CCA = 1 (Figure 5A4), where eq. (4) shows a scaling relation-261

ship 𝐷ASap
PR = 𝐷FSap

PR ∼ 𝑘2𝜇∕𝑑𝐷PR that depends on the sampling fraction 𝑘 (Figure 5D solid line). This262

contrasts with the 𝑘-independent dimensionality of RSap in eq. (1). Furthermore, if 𝑅ASap and its263

upper bound is not close to 1 (precisely 𝑅ASap ≤ 0.84 for the ERM model in Figure 5D), 𝐷ASap
PR align264

closer to the upper bound of RSap. This prediction agrees well with our observations in data across265

animals (Figure 5D, Appendix 1—figure 20 and Appendix 1—figure 21).266

267

Beyond dimensionality, our theory predicts the difference in the covariance spectrum between268

sampling methods based on the neuronal density 𝜌 in the functional space (eq. (3)). This density 𝜌269

remains constant during FSap (Figure 5A1) and decreases under RSap; the average density across270

anatomical regions ⟨𝜌⟩ in ASap lies between those of FSap and RSap. Analogous to eq. (4), the rela-271

tionship in 𝜌 orders the spectra: ASap’s spectrum lies between those of FSap and RSap (Methods).272

This further implies that the level of scale invariance under ASap should fall between that of RSap273

and FSap, which is confirmed by our experimental data (Figure 5E).274

Discussion275

Impact of hunting behavior on scale invariance and functional space organization276

How does task-related neural activity shape the covariance spectrum and brain-wide functional277

organization? We examine the hunting behavior in larval zebrafish, marked by eye convergence278

(both eyes move inward to focus on the central visual field) Bianco et al. (2011). We find that scale279

invariance of the eigenspectra persists and is enhanced even after removing the hunting frames280

from the Ca2+ imaging data (Figure 4C, Appendix 1—figure 15AB, Methods). This is consistent with281

the scale-invariant spectrum found in other data sets during spontaneous behaviors (Appendix 1—282

figure 10F, Appendix 1—figure 2GH), suggesting scale invariance is a general phenomenon.283

284

Interestingly, in the inferred functional space, we observe reorganizations of neurons after remov-285

ing hunting behavior (Appendix 1—figure 15C, D). Neurons in one cluster disperse from their cen-286

ter of mass (Appendix 1—figure 15D) and decreases the local neuronal density 𝜌 (Methods and287

Appendix 1—figure 15E). The neurons in this dispersed cluster have a consistent anatomical dis-288

tribution from the midbrain to the hindbrain in 4 out of 5 fish (Appendix 1—figure 17). During289

hunting, the cluster has robust activations that are widespread in the anatomical space but local-290

ized in the functional space(Appendix 3).291

292

Our findings suggest that the functional space could be defined by latent variables that represent293

cognitive factors such as decision-making, memory, and attention. These variables set the space’s294

dimensions, with neural activity patterns reflecting cognitive state dynamics. Functionally related295

neurons – through sensory tuning, movement parameters, internal conditions, or cognitive factors296

– become closer in this space, leading to stronger activity correlations.297
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Criticality and power law298

What drives brain dynamics with a slow-decaying distance-correlation function 𝑓 (𝑥⃗) in functional299

space? Long-range connections and a slow decline in projection strength over distance Kunst et al.300

(2019) may cause extensive correlations, enhancing global activity patterns. This behavior is also301

reminiscent of phase transitions in statistical mechanics Kardar (2007), where local interactions302

lead to expansive correlated behaviors. Studies suggest that critical brains optimize information303

processing Beggs and Plenz (2003); Dahmen et al. (2019). The link between neural correlation struc-304

tures and neuronal connectivity topology is an exciting area for future exploration.305

306

In the high-density regime of the ERM model, the rank plot (eq. (3)) for large eigenvalues (𝜆 > 1)307

follows a power law 𝜆 ∼ 𝑟−𝛼 , with 𝛼 = 1 − 𝜇∕𝑑 < 1. The scale invariant spectrum occurs when 𝛼308

is close to 1. Experimental data, however, align more closely with the model in the intermediate-309

density regime, where the power-law spectrum is an approximation and the decay is slower (for310

ERM model Appendix 1—figure 3BC, and for data 𝛼 = 0.47 ± 0.08, mean±SD, 𝑛 = 6 fish). Stringer311

et al. (2019a) found an 𝛼 ≳ 1 decay in the mouse visual cortex’s stimulus trial averaged covariance312

spectrum, and they argued that this decay optimizes visual code efficiency and smoothness. Our313

study differs in two fundamental ways. First, we recorded brain-wide activity during spontaneous314

or hunting behavior, calculating neural covariance from single-trial activity. Much of the neural315

activity was not driven by sensory stimulus and unrelated to specific tasks, requiring a different in-316

terpretation of the neural covariance spectrum. Second, without loss of generality, we normalized317

the mean variance of neural activity E(𝜎2) by scaling the covariance matrix so that its eigenvalues318

sum up to 𝑁 . This normalization imposes a constraint on the spectrum. In particular, large and319

small eigenvaluesmay have different behaviors and do not need to obey a single power law 𝜆 ∼ 𝑟−𝛼320

for all 𝑁 eigenvalues Pospisil and Pillow (2024) (Methods). Stringer et al. (2019a) did not take this321

possibility into account, making their theory less applicable to our analysis.322

323

We draw inspiration from the renormalization group (RG) approach to navigate neural covariance324

across scales, which has also been explored in the recent literature. Following Kadanoff’s block spin325

transformation Kardar (2007),Meshulam et al. (2019) formed size-dependent neuron clusters and326

their covariance matrices by iteratively pairing the most correlated neurons and placing them ad-327

jacent on a lattice. The groups expanded until the largest reached the system size. The RG process,328

akin to spatial sampling in functional space (FSap), maintains constant neuron density 𝜌. Thus, for329

any kernel function 𝑓 (𝑥⃗), including the power law and exponential, the covariance eigenspectrum330

remains invariant across scales (Appendix 1—figure 19A,B,D,E).331

332

Morrell et al. (2021, 2024) proposed a simple model in which a few time-varying latent factors333

impact the whole neural population. We evaluated if this model could account for the scale invari-334

ance seen in our data. Simulations showed that the resulting eigenspectra differed considerably335

from our findings (Appendix 1—figure 23). Although the Morrell model demonstrated a degree of336

scale invariance under functional sampling (or RG), it did not align with the scale-invariant features337

under random sampling, suggesting that this simple model might not capture all crucial features338

in our observations.339

340

We emphasize that the covariance spectrum being a power law is distinct from the scale invariance341

we define in this study, namely the collapse of spectrum curves under random neuron sampling.342

The random RNN model in Figure 2I shows a power-law behavior, but lacks true scale invariance343

as spectrum curves for different sizes do not collapse. When connection strength 𝑔 approaches344

1, the system exhibits a power law spectrum of 𝜆 ∝
(

𝑟
𝑁

)− 3
2 . Subsampling causes the spectrum to345

shift by 𝜆 ∝ 𝑘−
1
2

(

𝑟
𝑁

)− 3
2 , where 𝑘 = 𝑁𝑠∕𝑁 is the sampling fraction (derived from Eq. 24 in Hu and346
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Sompolinsky (2022)).347

348

Bounded dimensionality under random sampling349

The saturation of the dimensionality 𝐷PR at large sample sizes indicates a limit to neural assembly350

complexity, evidenced by the finite mean square covariance. This is in contrast with neural dy-351

namics models such as the balanced excitatory-inhibitory (E-I) neural network Renart et al. (2010),352

where E𝑖≠𝑗(𝐶2
𝑖𝑗) ∼ 1∕𝑁 resulting in an unbounded dimensionality (see Appendix 2). Our results sug-353

gest that the brain encodes experiences, sensations, and thoughts using a finite set of dimensions354

instead of an infinitely complex neural activity space.355

356

We found that the relationship between dimensionality and the number of recorded neurons de-357

pends on the sampling method. For functional sampling, the dimensionality scales with the sam-358

pling fraction 𝑘: 𝐷FSap
PR ∼ 𝑘2𝜇∕𝑑𝐷PR. This suggests that if anatomically sampled neurons are func-359

tionally clustered, as with cortical neurons forming functional maps, the increase in dimensionality360

with neuron number may seem unbounded. This offers new insights for interpreting large-scale361

neural activity data recorded under various techniques.362

363

Manley et al. (2024) found that, unlike in our study, neural activity dimensionality in head-fixed,364

spontaneously behaving mice did not saturate. They used shared variance component analysis365

(SVCA) and noted that PCA-based estimates often show dimensionality saturation, which is consis-366

tent with our findings. We intentionally chose PCA in our study for several reasons. First, PCA is a367

trusted andwidely usedmethod in neuroscience, proven to uncovermeaningful patterns in neural368

data. Second, its mathematical properties are well understood, making it particularly suitable for369

our theoretical analysis. Although newer methods such as SVCA might offer valuable insights, we370

believe PCA remains the most appropriate method for our research questions.371

372

It’s important to note that the scale invariance of dimensionality and covariance spectrum are dis-373

tinct phenomenawith different underlying requirements. Dimensionality invariance relies on finite374

mean square covariance, causing saturation at large sample sizes. In contrast, spectral invariance375

requires a slow-decaying correlation kernel (small 𝜇) and/or a high-dimensional functional space376

(large 𝑑). Although both features appear in our data, they result from distinct mechanisms. A neu-377

ral system could show saturating dimensionality without spectral invariance if it has finite mean378

square covariance but rapidly decaying correlations with functional distance. Understanding these379

requirements clarifies how neural organization affects different scale-invariant properties.380

Computational benefits of a scale-invariant covariance spectrum381

Our findings are validated acrossmultiple datasets obtained through various recording techniques382

andanimalmodels, ranging fromsingle-neuron calcium imaging in larval zebrafish to single-neuron383

multi-electrode recordings in the mouse brain (see Appendix 1—figure 2). The conclusion remains384

robust when the multi-electrode recording data are reanalyzed under different sampling rates (6385

Hz - 24 Hz, Appendix 1—figure 24). We also confirm that substituting a few negative covariances386

with zero retains the spectrumof the data covariancematrix (Appendix 1—figure 18 andMethods).387

388

The scale invariance of neural activity across different neuron assembly sizes could support ef-389

ficient multiscale information encoding and processing. This indicates that the neural code is390

robust and requires minimal adjustments despite changes in population size. One recent study391

shows that randomly sampled and coarse-grained macrovoxels can predict population neural ac-392

tivity Hoffmann et al. (2023), reinforcing that a random neuron subset may capture overall activity393

patterns. This enables downstream circuits to readout and process information through random394

projections Gao et al. (2017). A recent study demonstrates that a scale-invariant noise covariance395
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spectrum with a specific slope 𝛼 < 1 enables neurons to convey unlimited stimulus information as396

the population size increases Moosavi et al. (2024). The linear Fisher information, in this context,397

grows at least as 𝑁1−𝛼 .398

399

Understanding how dimensionality and spectrum change with sample size also suggests the possi-400

bility of extrapolating from small samples to overcome experimental limitations. This is particularly401

feasible when 𝜇∕𝑑 → 0, where the dimensionality and spectrum under anatomical, random, and402

functional sampling coincide (eqs. (3) and (4)). Developing extrapolation methods and exploring403

the benefits of scale-invariant neural code are promising future research directions.404

405

406

Materials and Methods407

Key resources table

Reagent type Designation Source or refer-
ence

Identifiers Additional
informationstrain, strain back-ground (Danio rerio) Tg(elavl3: H2B-GCaMP6f) https://doi.org/

10.7554/eLife.
12741

Jiu-Lin Du, In-stitute of Neu-roscience, Chi-nese Academyof Sciences,Shanghaisoftware, algorithm julia1.7 https://julialang.
org/software, algorithm MATLAB https://ww2.
mathworks.cn/software, algorithm Mathematica https://www.
wolfram.com/
mathematica/

Experimental methods408

The handling and care of the zebrafish complied with the guidelines and regulations of the Animal409

Resources Center of the University of Science and Technology of China (USTC). All larval zebrafish410

(huc:h2b -GCaMP6f Dunn et al. (2016)) were raised in E2 embryomedium (comprising 7.5mMNaCl,411

0.25 mM KCl, 0.5 mMMgSO4, 0.075 mM KH2PO4, 0.025 mM Na2HPO4, 0.5 mM CaCl2, and 0.35 mM412

NaHCO3; containing 0.5 mg/L methylene blue) at 28.5 °C and with a 14-h light and 10-h dark cycle.413

414

To induce hunting behavior (composed of motor sequences like eye convergence and J turn) in lar-415

val zebrafish, we fed them a large amount of paramecia over a period of 4-5 days post-fertilization416

(dpf). The animals were then subjected to a 24-hour starvation period, after which they were trans-417

ferred to a specialized experimental chamber. The experimental chamber was 20mm in diameter418

and 1mm in depth, and the head of each zebrafish was immobilized by applying 2% low melting419

point agarose. The careful removal of the agarose from the eyes and tail of the fish ensured that420

these body regions remained free to move during hunting behavior. Thus, characteristic behav-421

ioral features such as J-turns and eye convergence could be observed and analyzed. Subsequently,422

the zebrafish were transferred to an incubator and stayed overnight. At 7 dpf, several paramecia423

were introduced in front of the previously immobilized animals, each of which was monitored by424

a stereomicroscope. Those displaying binocular convergence were selected for subsequent Ca2+425

imaging experiments.426

427

We developed a novel optomagnetic system that allows (1) precise control of the trajectory of the428
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Notation Description
𝐶 covariance matrix, eq. (2)
𝐶𝑖𝑗 pairwise covariance between neuron 𝑖, 𝑗; entries of 𝐶
𝐷PR participation ratio dimension, eq. (5)
𝐷ASap
PR anatomical sampling dimension, eq. (4)

𝜆 eigenvalue of a covariance matrix 𝐶
𝑝(𝜆) probability density function of covariance eigenvalues, eq. (8)
𝑟 rank of an eigenvalue in descending order, eq. (3)
𝑞 fraction of eigenvalues up to 𝜆 and 𝑞 = 𝑟∕𝑁 , eq. (13)
𝑓 (𝑥⃗) = 𝑓 (‖𝑥⃗𝑖 − 𝑥⃗𝑗‖) kernel function or distance-correlation function, eq. (11)
𝑓 (𝑘⃗) Fourier transform of 𝑓 (𝑥⃗), 𝑓 (𝑘⃗) = ∫ℝ𝑑 𝑓 (𝑥⃗)𝑒

−𝑖𝑥⃗⋅𝑘⃗d𝑑 𝑥⃗

𝜇 power-law exponent in 𝑓 (𝑥⃗), eq. (11)
𝜖 resolution parameter in 𝑓 (𝑥⃗) to smooth the singularity near 0, eq. (11)
𝑁 number of neurons
𝑁0 the total number of neurons prior to sampling
𝑘 𝑁∕𝑁0 the fraction of sampled neurons
𝐿 linear box size of the functional space
𝜌 density of neurons in the functional space
𝑑 dimension of the functional space
𝑎𝑖(𝑡) neural activity of neuron 𝑖 at time 𝑡
𝜎2
𝑖 temporal variance of neural activity, eq. (2)
CI collapse index for measuring scale invariance eq. (13)
𝛼 power-law coefficient of eigenspectrum in the rank plot, Discuss
𝑥⃗𝑖, 𝑦𝑖 neuron 𝑖’s coordinate in the functional and anatomical space, respectively
𝑣func, 𝑣anat the first canonical directions in the functional and anatomical space, respectively
𝑅CCA the first canonical correlation
𝑅ASap correlation between anatomical and functional coordinates along ASap direction

Table 1. Table of notations.

paramecium and (2) imaging brain-wide Ca2+ activity during the hunting behavior of zebrafish. To429

control the movement of the paramecium, we treated these microorganisms with a suspension430

of ferric tetroxide for 30 minutes and selected those that responded to its magnetic attraction. A431

magnetic paramecium was then placed in front of a selected larva, and its movement was con-432

trolled by changing the magnetic field generated by Helmholtz coils that were integrated into the433

imaging system. The real-time position of the paramecium, captured by an infrared camera, was434

identified by online image processing. The positional vector relative to a predetermined target435

position was calculated. The magnitude and direction of the current in the Helmholtz coils were436

adjusted accordingly, allowing for precise control of the magnetic field and hence the movement437

of the paramecium. Multiple target positions could be set to drive the paramecium back and forth438

between multiple locations.439

440

The experimental setup consisted of head-fixed larval zebrafish undergoing two different types of441
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behavior: induced hunting behavior by a moving paramecium in front of a fish (fish 1-5), and spon-442

taneous behavior without any visual stimulus as a control (fish 6). Experiments were carried out at443

ambient temperature (ranging from 23°C to 25°C). The behavior of the zebrafish wasmonitored by444

a high-speed infrared camera (Basler acA2000-165umNIR, 0.66x) behind a 4F optical system and445

recorded at 50 Hz. Brain-wide Ca2+ imaging was achieved using XLFM. Light-field images were ac-446

quired at 10 Hz, using customized LabVIEW software (National Instruments, USA) or Solis software447

(Oxford Instruments, UK), with the help of a high-speed data acquisition card (PCIe-6321, National448

Instruments, USA) to synchronize the fluorescence with behavioral imaging.449

Behavior analysis450

The background of each behavior video was removed using the clone stamp tool in Adobe Pho-451

toshop CS6. Individual images were then processed by an adaptive thresholding algorithm, and452

fish head and yolk were selected manually to determine the head orientation. The entire body453

centerline, extending from head to tail, was divided into 20 segments. The amplitude of a bending454

segment was defined as the angle between the segment and the head orientation. To identify the455

paramecium in a noisy environment, we subtracted a background image, averaged over a time456

window of 100 s, from all the frames. The major axis of the left or right eye was identified using457

DeepLabCutMathis et al. (2018). The eye orientation was defined as the angle between the rostro-458

caudal axis and themajor axis of an eye; The convergence angle was defined as the angle between459

themajor axes of the left and right eyes. An eye-convergence event was defined as a period of time460

where the angle between the long axis of the eyes stayed above 50 degrees Bianco et al. (2011).461

Imaging data acquisition and processing462

We used a fast eXtended light field microscope (XLFM, with a volume rate of 10 Hz) to record Ca2+463

activity throughout the brain of head-fixed larval zebrafish. Fishwere orderedby the dates of exper-464

iments. As previously described Cong et al. (2017), we adopted the Richardson-Lucy deconvolution465

method to iteratively reconstruct 3D fluorescence stacks (600 × 600 × 250) from the acquired 2D466

images (2048 × 2048). This algorithm requires an experimentally measured point spread function467

(PSF) of the XLFM system. The entire recording for each fish is 15.3±4.3 min (mean±SD).468

469

To perform image registration and segmentation, we first cropped and resized the original im-470

age stack to 400 x 308 x 210, which corresponded to the size of a standard zebrafish brain (zbb)471

atlas Tabor et al. (2019). This step aimed to reduce substantial memory requirements and com-472

putational costs in subsequent operations. Next, we picked a typical volume frame and aligned it473

with the zbb atlas using a basic 3D affine transformation. This transformed frame was used as a474

template. We aligned each volume with the template using rigid 3D intensity-based registration475

Studholme et al. (1997) and non-rigid pairwise registration Rueckert et al. (1999) in the Computa-476

tional Morphometry Toolkit (CMTK) (https://www.nitrc.org/projects/cmtk/). After voxel registration,477

we computed the pairwise correlation between nearby voxel intensities and performed the water-478

shed algorithm on the correlation map to cluster and segment voxels into consistent ROIs across479

all volumes. We defined the diameter of each ROI using the maximum Feret diameter (the longest480

distance between any two voxels within a single ROI).481

482

Finally, we adopted the "OASIS" deconvolution method to denoise and infer neural activity from483

the fluorescence time sequence Friedrich et al. (2017). The deconvolved Δ𝐹∕𝐹 of each ROI was484

used to infer firing rates for subsequent analysis.485

Other experimental datasets analyzed486

To validate our findings across different recording methods and animal models, we also analyzed487

three additional datasets. We include a brief description below for completeness. Further details488

can be found in the respective reference. The first dataset includes whole-brain light-sheet Ca2+489
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Dataset Data ReferenceLight-sheet imaging of larval zebrafish
Chen et al. (2018) https://janelia.figshare.com/articles/dataset/

Whole-brain_light-sheet_imaging_data/7272617Neuropixels recordings in mice Stringer
et al. (2019b) https://janelia.figshare.com/articles/dataset/Eight-probe_

Neuropixels_recordings_during_spontaneous_behaviors/
7739750Two-photon imaging in mice Stringer

et al. (2019b) https://janelia.figshare.com/articles/dataset/Recordings_
of_ten_thousand_neurons_in_visual_cortex_during_
spontaneous_behaviors/6163622

Table 2. Resources for additional experimental datasets

imaging of immobilized larval zebrafish in the presence of visual stimuli as well as in a spontaneous490

state Chen et al. (2018). Each volume of the brain was scanned through 2.11±0.21 planes per sec,491

providing a near-simultaneous readout of neuronal Ca2+ signals. We analyzed fish 8 (69,207 neu-492

rons × 7,890 frames), 9 (79,704 neurons × 7,720 frames) and 11 (101,729 neurons × 8,528 frames),493

which are the first three fish data with more than 7,200 frames. For simplicity, we labeled them494

l2, l3, and l1(fl). The second dataset consists of Neuropixels recordings from approximately ten495

different brain areas in mice during spontaneous behavior Stringer et al. (2019b). Data from the496

threemice, Kerbs, Robbins, andWaksman, include the firing ratematrices of 1,462 neurons × 39,053497

frames, 2,296 neurons × 66,409 frames, and 2,688 neurons × 74,368 frames, respectively. The last498

dataset comprises two-photon Ca2+ imaging data (2-3 Hz) obtained from the visual cortex of mice499

during spontaneous behavior. While this dataset includes numerous animals, we focused on the500

first three animals that exhibited spontaneous behavior:spont_M150824_MP019_2016-04-05 (11,983501

neurons × 21,055 frames), spont_M160825_MP027_2016-12-12 (11,624 neurons × 23,259 frames),502

and spont_M160907_MP028_2016-09-26 (9,392 neurons × 10,301 frames) Stringer et al. (2019b).503

Covariance matrix, eigenspectrum and sampling procedures504

To begin, we multiplied the inferred firing rate of each neuron (see Methods) by a constant such505

that in the resulting activity trace 𝑎𝑖, the mean of 𝑎𝑖(𝑡) over the nonzero time frames equaled one506

Meshulam et al. (2019). Consistent with the literature Meshulam et al. (2019), this step aimed to507

eliminate possible confounding factors in the raw activity traces, such as the heterogeneous ex-508

pression level of the fluorescence protein within neurons and the non-linear conversion of the509

electrical signal to Ca2+ concentration. Note that after this scaling, neurons could still have differ-510

ent activity levels characterized by the variance of 𝑎𝑖(𝑡) over time, due to differences in the sparsity511

of activity (proportion of nonzero frames) and the distribution of nonzero 𝑎𝑖(𝑡) values. Without nor-512

malization, the covariancematrix becomes nearly diagonal, causing significant underestimation of513

the covariance structures.514

515

The three models of covariance in Figure 2G-I were constructed as follows. For model in Figure 2G,516

the entries of matrix 𝐺 (with dimensions 𝑁 × 𝑇 ) were sampled from an i.i.d. Gaussian distribution517

with zero mean and standard deviation 𝜎 = 1. In Figure 2H, we constructed the composite co-518

variance matrix for fish 1 achieved by maintaining the eigenvalues from the fish 1 data covariance519

matrix and replacing the eigenvectors𝑈 with a set of random orthonormal basis. Lastly, the covari-520

ancematrix in Figure 2I was generated froma randomly connected recurrent network of linear rate521

neurons. The entries in the synaptic weight matrix are normally distributed with 𝐽𝑖𝑗 ∼  (0, 𝑔2∕𝑁),522

with a coupling strength 𝑔 = 0.95 Hu and Sompolinsky (2022);Morales et al. (2023). For consistency,523

we used the same number of time frames 𝑇 = 7, 200 when comparing CI across all the datasets524

(Figure 4BC, Figure 5DE, Appendix 1—figure 6C). For other cases, we analyzed the full length of the525

data (number of time frames: fish 1 - 7495, fish 2 - 9774, fish 3 - 13904, fish 4 - 7318, fish 5 - 7200,526

fish 6 - 9388). Next, the covariance matrix was calculated as 𝐶𝑖𝑗 = 1
𝑇−1

∑𝑇
𝑡=1

(

𝑎𝑖(𝑡) − 𝑎̄𝑖
) (

𝑎𝑗(𝑡) − 𝑎̄𝑗
),527

where 𝑎̄𝑖 is the mean of 𝑎𝑖(𝑡) over time. Finally, to visualize covariance matrices on a common scale,528
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wemultipliedmatrix 𝐶 by a constant such that the average of its diagonal entries equaled one, that529

is, Tr(𝐶)∕𝑁 = 1. This scaling did not alter the shape of covariance eigenvalue distribution, but set530

the mean at 1 (see also eq. (8)).531

532

Tomaintain consistency across data sets, we fixed the same initial number of neurons at𝑁0 = 1, 024.533

These𝑁0 neurons were randomly chosen once for each zebrafish dataset and then used through-534

out the subsequent analyses. We adopted this setting for all analyses except in two particular535

instances: (1) for comparisons among the three sampling methods (RSap, ASap, and FSap), we536

specifically chose 1,024 neurons centered along the anterior-posterior axis, mainly from the mid-537

brain to the anterior hindbrain regions (Figure 5DE, Appendix 1—figure 20). (2) When investigating538

the impact of hunting behavior on scale invariance, we included the entire neuronal population539

(Methods).540

541

We used an iterative procedure to sample the covariance matrix 𝐶 (calculated from data or as542

simulated ERMs). For RSap, in the first iteration, we randomly selected half of the neurons. The543

covariance matrix for these selected neurons was a 𝑁∕2 ×𝑁∕2 diagonal block of 𝐶 . Similarly, the544

covariance matrix of the unselected neurons was another diagonal block of the same size. In the545

next iteration, we similarly created two new sampled blocks with half the number of neurons for546

each of the blocks we had. Repeating this process for 𝑛 iterations resulted in 2𝑛 blocks, each con-547

taining 𝑁 ∶= 𝑁0∕2𝑛 neurons. At each iteration, the eigenvalues of each block were calculated and548

averaged across the blocks after being sorted in descending order. Finally, the averaged eigenval-549

ues were plotted against rank/𝑁 on a log-log scale.550

551

In the case of ASap and FSap, the process of selecting neurons was different, although the re-552

maining procedures followed the RSap protocol. In ASap, the selection of neurons was based on553

a spatial criterion: neurons close to the anterior end on the anterior-posterior axis were grouped554

to create a diagonal block of size 𝑁
2
× 𝑁

2
, with the remaining neurons forming a separate block.555

FSap, on the other hand, used the Renormalization Group (RG) frameworkMeshulam et al. (2019)556

to define the blocks (details in Methods). In each iteration, the cluster of neurons within a block557

that showed the highest average correlation (E𝑖≠𝑗(𝐶2
𝑖𝑗)) was identified and labeled as the most cor-558

related cluster (refer to Figure 5D, Appendix 1—figure 20 and Appendix 1—figure 21).559

560

In the ERM model, as part of implementing ASap, we generated anatomical and functional coordi-561

nates for neuronswith a specified CCA properties as described inMethods. Mirroring the approach562

taken with our data, ASap segmented neurons into groups based on the first dimension of their563

anatomical coordinates, akin to the anterier-posterior axis. FSap employed the same RG proce-564

dures outlined earlier (Methods).565

566

To determine the overall power-law coefficient of the eigenspectra, 𝛼, throughout sampling, we567

fitted a straight line in the log-log rank plot to the large eigenvalues that combined the original and568

three iterations of sampled covariancematrices (selecting the top 10% eigenvalues for eachmatrix569

and excluding the first four largest ones for eachmatrix). We averaged the estimated 𝛼 over 10 rep-570

etitions of the entire sampling procedure. 𝑅2 of the power-law fit was computed in a similar way.571

To visualize the statistical structures of the original and sampled covariancematrices, the orders of572

the neurons (i.e. columns and rows) are determined by the following algorithm. We first construct573

a symmetric Toeplitz matrix  , with entries 𝑖,𝑗 = 𝑡𝑖−𝑗 and 𝑡𝑖−𝑗 ≡ 𝑡𝑗−𝑖. The vector 𝑡⃗ = [𝑡0, 𝑡1,… , 𝑡𝑁−1]574

is equal to the mean covariance vector of each neuron calculated below. Let 𝑐𝑖 be a row vector of575

the data covariance matrix; we identify 𝑡⃗ = 1
𝑁

∑𝑁
𝑖=1𝐷(𝑐𝑖), where 𝐷(⋅) denotes a numerical ordering576

operator, namely rearranging the elements in a vector 𝑐 such that 𝑐0 ≥ 𝑐1 ≥ … ≥ 𝑐𝑁−1. The second577

step is to find a permutation matrix 𝑃 such that ‖ − 𝑃𝐶𝑃 𝑇
‖𝐹 is minimized, where ‖ ‖𝐹 denotes578

the Frobenius norm. This quadratic assignment problem is solved by simulated annealing. Note579
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that after sampling, the smaller matrix will appear different from the larger one. We need to per-580

form the above reordering algorithm for every sampled matrix so that matrices of different sizes581

become similar in Figure 2E.582

583

The composite covariance matrix with substituted eigenvectors in (Figure 2H) was created as de-584

scribed in the following steps. First, we generated a random orthogonal matrix 𝑈𝑟 (based on the585

Haar measure) for the new eigenvectors. This was achieved by QR decomposition 𝐴 = 𝑈𝑟𝑅 of a586

random matrix 𝐴 with i.i.d. entries 𝐴𝑖𝑗 ∼  (0, 1∕𝑁). The composite covariance matrix 𝐶𝑟 was then587

defined as 𝐶𝑟 ∶= 𝑈𝑟Λ𝑈 𝑇
𝑟 , where Λ is a diagonal matrix that contains the eigenvalues of 𝐶 . Note588

that since all the eigenvalues are real and 𝑈𝑟 is orthogonal, the resulting 𝐶𝑟 is a real and symmetric589

matrix. By construction, 𝐶𝑟 and 𝐶 have the same eigenvalues, but their sampled eigenspectra can590

differ.591

Dimensionality592

In this section, we introduce the Participation Ratio (𝐷PR) as a metric for effective dimensionality593

of a system, based on Recanatesi et al. (2019); Litwin-Kumar et al. (2017); Gao and Ganguli (2015);594

Gao et al. (2017); Clark et al. (2023); Dahmen et al. (2020). 𝐷PR is defined as:595

𝐷PR(𝐶) =
(
∑

𝑖 𝜆𝑖
)2

∑

𝑖 𝜆
2
𝑖

=
(Tr(𝐶))2

Tr(𝐶2)
=

𝑁2E(𝜎2)2

𝑁E(𝜎4) +𝑁(𝑁 − 1)E𝑖≠𝑗(𝐶2
𝑖𝑗)

(5)
Here, 𝜆𝑖 are the eigenvalues of the covariance matrix 𝐶 , representing variances of neural activ-596

ities. Tr(⋅) denotes the trace of the matrix. The term E𝑖≠𝑗(𝐶2
𝑖𝑗) denotes the expected value of the597

squared elements that lie off the main diagonal of 𝐶 . This represents the average squared covari-598

ance between the activities of distinct pairs of neurons.599

600

With these definitions, we explore the asymptotic behavior of 𝐷PR as the number of neurons 𝑁601

approaches infinity:602

lim
𝑁→∞

𝐷PR(𝐶) =
E(𝜎2)2

E𝑖≠𝑗(𝐶2
𝑖𝑗)

This limit highlights the relationship between the PR dimension and the average squared co-603

variance among different pairs of neurons. To predict how𝐷PR scales with the number of neurons604

(Figure 2D), we first estimated these statistical quantities (E𝑖≠𝑗(𝐶2
𝑖𝑗), E(𝜎2), and E(𝜎4)) using all avail-605

able neurons, then applied eq. (5) for different values of 𝑁 . It is worth mentioning that a similar606

theoretical finding is established by Dahmen et al. (2020). The transition from increasing 𝐷PR with607

𝑁 to approaching the saturation point occurs when 𝑁 is significantly larger than 𝐷PR.608

ERMmodel609

We consider the eigenvalue distribution or spectrum of the matrix 𝐶 at the limit of 𝑁 ≫ 1 and610

𝐿 ≫ 1. This spectrum can be analytically calculated in both high-density and intermediate-density611

scenarios using the replica methodMézard et al. (1999). The following sketch shows our approach,612

and detailed derivations can be found in Appendix 2. To calculate the probability density func-613

tion of the eigenvalues (or eigendensity), we first compute the resolvent or Stieltjes transform614

𝑔(𝑧) = − 2
𝑁
𝜕𝑧

⟨

ln det(𝑧𝐼 − 𝐶)−1∕2
⟩, 𝑧 ∈ ℂ. Here ⟨...⟩ is the average across the realizations of 𝐶 (that615

is, random 𝑥⃗𝑖 ’ s and 𝜎2
𝑖 ’ s). The relationship between the resolvent and the eigendensity is given by616

the Sokhotski-Plemelj formula:617

𝑝(𝜆) = − 1
𝜋

lim
𝜂→0+

𝐈𝐦 𝑔(𝜆 + 𝑖𝜂), (6)
where 𝐈𝐦means imaginary part.618

619
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Here we follow the field-theoretic approach Mézard et al. (1999), which turns the problem of cal-620

culating the resolvent to a calculation of the partition function in statistical physics by using the621

replica method. In the limit 𝑁 → ∞, 𝐿𝑑 → ∞, 𝜌 being finite, by performing a leading order ex-622

pansion of the canonical partition function at large 𝑧 (Appendix 2), we find the resolvent is given623

by624

𝑔(𝑧) = 1
𝜌 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

1
𝑧 − 𝜌E(𝜎2)𝑓 (𝑘⃗)

(7)
625

626

In the high-density regime, the probability density function (pdf) of the covariance eigenvalues can627

be approximated and expressed from eqs. (6) and (7) using the Fourier transform of the kernel628

function 𝑓 (𝑘⃗):629

𝑝(𝜆) = 1
𝜌E(𝜎2) ∫ℝ𝑑

d𝑑 𝑘⃗
(2𝜋)𝑑

𝛿
(

𝜆
E(𝜎2)

− 𝜌𝑓 (𝑘⃗)
)

, (8)
where 𝛿(𝑥) is the Dirac delta function and E(𝜎2) is the expected value of the variances of neural630

activity. Intuitively, eq. (8) means that 𝜆∕𝜌 are distributed with a density proportional to the area of631

𝑓 (𝑘⃗)’ level sets (i.e., isosurfaces).632

633

In Results, we found that the covariance matrix consistently shows greater scale invariance com-634

pared to the correlation matrix across all datasets. This suggests that the variability in neuronal635

activity significantly influences the eigenspectrum. This finding, however, cannot be explained by636

the high-density theory, which predicts that the eigenspectrum of the covariance matrix is simply637

a rescaling of the correlation eigenspectrum by E(𝜎2
𝑖 ), the expected value of the variances of neural638

activity. Without loss of generality, we can always standardize the fluctuation level of neural activity639

by setting E(𝜎2) = 1. This is equivalent to multiplying the covariance matrix 𝐶 by a constant such640

that Tr(𝐶)∕𝑁 = 1, which in turn scales all the eigenvalues of 𝐶 by the same factor. Consequently,641

the heterogeneity of 𝜎2
𝑖 has no effect on the scale invariance of the eigenspectrum (see eq. (8)).642

This theoretical prediction is indeed correct and is confirmed by direct numerical simulations and643

quantifying the scale invariance using the CI (Appendix 1—figure 6A).644

645

Fortunately, the inconsistency between theory and experimental results can be resolved by fo-646

cusing the ERM within the intermediate density regime 𝜌𝜖𝑑 ≪ 1, where neurons are positioned at647

a moderate distance from each other. As mentioned above, we set E(𝜎2) = 1 in our model and648

vary the diversity of activity fluctuations among neurons represented by E(𝜎4). Consistent with the649

experimental observations, we find that the CI decreases with E(𝜎4) (see Appendix 1—figure 6B).650

This agreement indicates that the neural data are better explained by the ERM in the intermediate651

density regime.652

653

To gain a deeper understanding of this behavior, we use the Gaussian variational methodMézard654

et al. (1999) to calculate the eigenspectrum. Unlike the high-density theory where the eigendensity655

has an explicit expression, in the intermediate density the resolvent 𝑔(𝑧) no longer has an explicit656

expression and is given by the following equation657

𝑔(𝑧) =

⟨

1
𝑧 − 𝜎2 ∫ D𝑘⃗ 𝐺̃(𝑘⃗, 𝑧)

⟩

𝜎

, (9)
where ⟨...⟩𝜎 computes the expectation value of the termwithin the bracket with respect to 𝜎, namely658

⟨...⟩𝜎 ≡ ∫ ...𝑝(𝜎)d𝜎. Here and in the following, we denote ∫ D𝑘⃗ ≡ ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

. The function 𝐺(𝑘⃗, 𝑧) is659
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determined by a self-consistent equation,660

1
𝑓 (𝑘⃗)

= 1
𝐺̃(𝑘⃗, 𝑧)

+

⟨

𝜌𝜎2

𝑧 − 𝜎2 ∫ D𝑘⃗ 𝐺̃(𝑘⃗, 𝑧)

⟩

𝜎

(10)

We can solve ∫ D𝑘⃗ 𝐺(𝑘⃗, 𝑧) from eq. (10) numerically and below is an outline, and the details are661

explained in Appendix 2. Let us define the integral  ≡ ∫ D𝑘⃗ 𝐺̃(𝑘⃗, 𝑧). First, we substitute 𝑧 ≡ 𝜆 + 𝑖𝜂662

into eq. (10) and write  = 𝐑𝐞+ 𝑖𝐈𝐦. eq. (10) can thus be decomposed into its real part and imag-663

inary part, and a set of nonlinear and integral equations, each of which involves both 𝐑𝐞 and 𝐈𝐦.664

We solve these equations at the limit 𝜂 → 0 using a fixed-point iteration that alternates between665

updating 𝐑𝐞 and 𝐈𝐦 until convergence.666

667

Wefind that the variational approximations exhibit excellent agreement with the numerical simula-668

tion for both large and intermediate 𝜌 where the high-density theory starts to deviate significantly669

(for 𝜌 = 256 and 𝜌 = 10.24, 𝜖 = 0.03125, Appendix 1—figure 3). Note that the departure of the leading670

eigenvalues in these plots is expected, since the power-law kernel function we use is not integrable671

(see Methods).672

673

To elucidate the connection between the two different methods, we estimate the condition when674

the result of the high-density theory (eq. (8)) matches that of the variational method (eqs. (9)675

and (10)) (Appendix 2). The transition between these two density regimes can also be understood676

(see ?? and Appendix 2).677

678

Importantly, the scale invariance of the spectrum at 𝜇∕𝑑 → 0 previously derived using the high-679

density result (eq. (3)) canbe extended to the intermediate-density regimebyproving the 𝜌-independence680

using the variational method (Appendix 2).681

682

Finally, using the variational method and the integration limit estimated by simulation (see E(𝜎4),683

indeed improves the collapse of the eigenspectra for intermediate 𝜌 (684

Kernel function685

Throughout the paper, we havemainly considered a particular approximate power-law kernel func-686

tion inspired by the Student’s t distribution687

𝑓 (𝑥⃗) = 𝜖𝜇(𝜖2 + ‖𝑥⃗‖2)−𝜇∕2. (11)
To understand how to choose 𝜖 and 𝜇, see Methods. Variations of eq. (11) near 𝑥 = 0 have also688

been explored; see a summary in table 3.689

690

691

It is worth mentioning that a power law is not the only slow decaying function that can pro-692

duce a scale-invariant covariance spectrum (Appendix 1—figure 5). We choose it for its analytical693

tractability in calculating the eigenspectrum. Importantly, we find numerically that the two con-694

tributing factors to scale invariance – namely, slow spatial decay and higher functional space – can695

be generalized to other nonpower-law functions. An example is the stretched exponential function696

𝑓 (𝑥⃗) = 𝑒−‖𝑥⃗‖𝜂 with 0 < 𝜂 < 1. When 𝜂 is small and 𝑑 is large, the covariance eigenspectra also display697

a similar collapse upon random sampling (Appendix 1—figure 5).698

699

This approximate power-law 𝑓 (𝑥⃗) has the advantage of having an analytical expression for its700
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𝑓 (𝑥⃗) Definition
Flat 𝑓 (𝑥⃗) =

{

1, ‖𝑥⃗‖ < 𝜖
𝜖𝜇

‖𝑥⃗‖𝜇 , ‖𝑥⃗‖ ≥ 𝜖

Tangent 𝑓 (𝑥⃗) =

{

𝑏‖𝑥⃗‖ + 1, ‖𝑥⃗‖ < 𝑐𝜖, 𝑓 ′(𝑐𝜖) = 𝑏
𝜖𝜇

‖𝑥⃗‖𝜇 , ‖𝑥⃗‖ ≥ 𝑐𝜖

Tent 𝑓 (𝑥⃗) =

{

𝑏‖𝑥⃗‖ + 1, ‖𝑥⃗‖ < 𝑐𝜖, 𝑓 ′(𝑐𝜖) ≠ 𝑏
𝜖𝜇

‖𝑥⃗‖𝜇 , ‖𝑥⃗‖ ≥ 𝑐𝜖

Parabola 𝑓 (𝑥⃗) =

{

𝑏‖𝑥⃗‖2 + 1, ‖𝑥⃗‖ < 𝑐𝜖, 𝑓 ′(𝑐𝜖) = 2𝑏𝑐𝜖
𝜖𝜇

‖𝑥⃗‖𝜇 , ‖𝑥⃗‖ ≥ 𝑐𝜖

t pdf 𝑓 (𝑥⃗) = 𝜖𝜇(𝜖2 + ‖𝑥⃗‖2)−𝜇∕2

Table 3. Modifications of the shape of 𝑓 (𝑥⃗) near ‖𝑥⃗‖ = 0 used in Appendix 1—figure 7,
Appendix 1—figure 8 and Appendix 1—figure 9. Flat: when ‖𝑥⃗‖ < 𝜖, 𝑓 (𝑥⃗) = 1. Tangent: when ‖𝑥⃗‖ < 𝑐𝜖, 𝑓 (𝑥⃗)
follows a tangent line of the exact power law (𝑏‖𝑥⃗‖ + 1 and 𝜖𝜇

‖𝑥⃗‖𝜇 have a same first-order derivative when
‖𝑥⃗‖ = 𝑐𝜖). 𝑏 and 𝑐 are constants. Tent: when ‖𝑥⃗‖ < 𝑐𝜖, 𝑓 (𝑥⃗) follows a straight line while the slope is not the
same as the tangent case. Parabola: when ‖𝑥⃗‖ < 𝑐𝜖, 𝑓 (𝑥⃗) follows a quadratic function (𝑎𝑥2 + 1 and 𝜖𝜇

‖𝑥⃗‖𝜇 havesame first-order derivative). t pdf: mimic the smoothing treatment like the t distribution. All the constantparameters are set such that 𝑓 (0) = 1.

Fourier transform, which is crucial for the high-density theory (eq. (8)),701

𝑓 (𝑘⃗) =
2
𝑑−𝜇+2

2 𝜋
𝑑
2 𝑘

𝜇−𝑑
2 𝜖

𝜇+𝑑
2 𝐾(𝑑−𝜇)∕2(𝑘𝜖)

Γ(𝜇∕2)
, 𝑘 = ‖𝑘⃗‖ (12)

Here 𝐾𝛼(𝑥) is the modified Bessel function of the second kind, and Γ(𝑥) is the Gamma function. We702

calculated the above formulas analytically for 𝑑 = 1, 2, 3 with the assistance of Mathematica and703

conjectured the case for general dimension 𝑑, which we confirmed numerically for 𝑑 ≤ 10.704

705

Wewant to explain two technical points relevant to the interpretation of our numerical results and706

the choice of 𝑓 (𝑥⃗). Unlike the case in the usual ERM, here we allow 𝑓 (𝑥⃗) to be non-integrable (over707

ℝ𝑑 ), which is crucial to allow power law 𝑓 (𝑥⃗). The nonintegrability violates a condition in the classical708

convergence results of the ERM spectrum Bordenave (2008) as 𝑁 → ∞. We believe that this is ex-709

actly the reason for the departure of the first few eigenvalues fromour theoretical spectrum (e.g., in710

Figure 3). Our hypothesis is also supported by ERM simulations with integrable 𝑓 (𝑥⃗) (Appendix 1—711

figure 4), where the numerical eigenspectrum matches closely with our theoretical one, including712

the leading eigenvalues. For ERM to be a legitimate model for covariance matrices, we need to en-713

sure that the resulting matrix 𝐶 is positive semidefinite. According to the Bochner theorem Rudin714

(1990), this is equivalent to the Fourier transform (FT) of the kernel function 𝑓 (𝑘⃗) being nonnega-715

tive for all frequencies. For example, in 1D, a rectangle function rect(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, if |𝑥| ≤ 1
2

0, otherwise does not716

meet the condition (its FT is sinc(𝑥) = sin(𝑥)
𝑥
), but a tent function tent(𝑥) =

⎧

⎪

⎨

⎪

⎩

1 − |𝑥|, if |𝑥| ≤ 1

0, otherwise does717

(its FT is sinc2(𝑥)). For the particular kernel function 𝑓 (𝑥⃗) in eq. (11), this condition can be easily veri-718

fied using the analytical expressions of its Fourier transform (eq. (12)). The integral expression for719

𝐾𝛼(𝑥), given as 𝐾𝛼(𝑥) = ∫ ∞
0 𝑒−𝑥 cosh 𝑡 cosh(𝛼𝑡)𝑑𝑡, shows that 𝐾𝛼(𝑥) is positive for all 𝑥 > 0. Likewise, the720

Gamma function Γ(𝑥) > 0. Therefore, the Fourier transform of eq. (11) is positive and the resulting721

matrix 𝐶 (of any size and values of 𝑥⃗𝑖) is guaranteed to be positive definite.722
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723

Building upon the theory outlined above, numerical simulations further validated the empirical724

robustness of our ERMmodel, as showcased in Figure 3B-D and Figure 4A. In Figure 3B-D, the ERM725

was characterized by the parameters 𝑁 = 1024, 𝑑 = 2, 𝐿 = 10, 𝜌 = 10.24 and 𝜇 = 0.5 and 𝜖 = 0.03125726

for 𝑓 (𝑥⃗). To numerically compute the eigenvalue probability density function, we generated the727

ERM 100 times, each sampled using the method described in Methods. The probability density728

function (pdf) was computed by calculating the pdf of each ERM realization and averaging these729

across the instances. The curves in Figure 3D showed the average of over 100 ERM simulations.730

The shaded area (most of which is smaller than the marker size) represented the SEM. For Fig-731

ure 4A, the columns from left to right were corresponded to 𝜇 = 0.5, 0.9, 1.3, and the rows from top732

to bottom were corresponded to 𝑑 = 1, 2, 3. Other ERM simulation parameters: 𝑁 = 4096, 𝜌 = 256,733

𝐿 = (𝑁∕𝜌)1∕𝑑 , 𝜖 = 0.03125 and 𝜎2
𝑖 = 1. It should be noted that for Figure 4A, the presented data734

pertain to a single ERM realization.735

Collapse index (CI)736

We quantify the extent of scale invariance using CI defined as the area between two spectrum737

curves (Figure 4A upper right), providing an intuitive measure of the shift of the eigenspectrum738

when varying the number of sampled neurons. We chose the CI over other measures of distance739

between distributions for several reasons. First, it directly quantifies the shift of the eigenspec-740

trum, providing a clear and interpretable measure of scale invariance. Second, unlike methods741

that rely on estimating the full distribution, the CI avoids potential inaccuracies in estimating the742

probability of the top leading eigenvalues. Finally, the use of CI is motivated by theoretical consid-743

erations, namely the ERM in the high-density regime, which provides an analytical expression for744

the covariance spectrum (eq. (3)) valid for large eigenvalues.745

CI ∶= 1
log(𝑞0∕𝑞1) ∫

log 𝑞0

log 𝑞1

|

|

|

|

𝜕 log 𝜆(𝑞)
𝜕 log 𝜌

|

|

|

|

d log 𝑞, (13)
we set 𝑞1 such that 𝜆(𝑞1) = 1, which is the mean of the eigenvalues of a normalized covariance746

matrix. The other integration limit 𝑞0 is set to 0.01 such that 𝜆(𝑞0) is the 1% largest eigenvalue.747

Here we provide numerical details on calculating CI for the ERM simulations and experimental748

data.749

A calculation of collapse index for experimental datasets/ERM model750

To calculate CI for a covariance matrix 𝐶 of size𝑁0, we first computed its eigenvalues 𝜆0𝑖 and those751

of the sampled block 𝐶𝑠 of size 𝑁𝑠 = 𝑁0∕2, denoted as 𝜆𝑠𝑖 (averaged over 20 times for the ERM752

simulation and 2000 times in experimental data). Next, we estimated log 𝜆(𝑞) using the eigenvalues753

of 𝐶0 and 𝐶𝑠 at 𝑞 = 𝑖∕𝑁𝑠, 𝑖 = 1, 2,… , 𝑁𝑠. For the sampled 𝐶𝑠, we simply had log 𝜆(𝑞 = 𝑖∕𝑁𝑠) = log 𝜆𝑠𝑖 , its754

𝑖-th largest eigenvalue. For the original𝐶0, log 𝜆(𝑞 = 𝑖∕𝑁𝑠)was estimated by a linear interpolation, on755

the log 𝜆-log 𝑞 scale, using the value of log 𝜆(𝑞) in the nearest neighboring 𝑞 = 𝑖∕𝑁0 ’s (which again are756

simply log 𝜆0𝑖 ). Finally, the integral (eq. (13)) was computed using the trapezoidal rule, discretized at757

𝑞 = 𝑖∕𝑁𝑠 ’ s, using the finite difference 𝜕 log 𝜆(𝑞)
𝜕 log 𝜌

≈ 1
log(𝑁0∕𝑁𝑠)

|Δ log 𝜆(𝑞)|, where Δ denotes the difference758

between the original eigenvalues of 𝐶0 and those of sampled 𝐶𝑠.759

Estimating CI using the variational method760

In the definition of CI (eq. (13) , calculating 𝜆(𝑞) and 𝜕 log 𝜆(𝑞)
𝜕 log 𝜌

directly using the variational method is761

difficult, but we can make use of an implicit differentiation762

𝜕 log 𝜆(𝑞, 𝜌)
𝜕 log 𝜌

=
𝜌
𝜆
𝜕𝜆(𝑞, 𝜌)
𝜕𝜌

= −
𝜌
𝜆

𝜕𝑞(𝜌,𝜆)
𝜕𝜌

𝜕𝑞(𝜌,𝜆)
𝜕𝜆

, (14)
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where 𝑞(𝜆) ∶= ∫ ∞
𝜆 𝑝(𝜆)d𝜆 is the complementary cdf (the inverse function of 𝜆(𝑞) in Methods). Using763

this, the integral in CI (eq. (13)) can be rewritten as764

∫

log 𝑞0

log 𝑞1

|

|

|

|

𝜕 log 𝜆(𝑞, 𝜌)
𝜕 log 𝜌

|

|

|

|

d log 𝑞 = ∫

𝑞0

𝑞1

|

|

|

|

|

|

−
𝜌
𝑞𝜆

𝜕𝑞
𝜕𝜌
𝜕𝑞
𝜕𝜆

|

|

|

|

|

|

d𝑞

=∫

𝜆(𝑞0)

𝜆(𝑞1)

|

|

|

|

|

|

−
𝜌
𝑞𝜆

𝜕𝑞
𝜕𝜌
𝜕𝑞
𝜕𝜆

|

|

|

|

|

|

𝜕𝑞
𝜕𝜆

d𝜆 = ∫

𝜆(𝑞1)

𝜆(𝑞0)

|

|

|

|

1
𝜆
𝜕 log 𝑞
𝜕 log 𝜌

|

|

|

|

d𝜆.

(15)

Since 𝜕𝑞
𝜕𝜆

= −𝑝(𝜆) < 0, we switch the order of the integration interval in the final expression of765

eq. (15).766

767

First, we explain how to compute the complementary cdf 𝑞(𝜆) numerically using the variational768

method. The key is to integrate the probability density function 𝑝(𝜆) from 𝜆 to a finite 𝜆(𝑞𝑠) rather769

than to infinity,770

𝑞(𝜆) = ∫

∞

𝜆
𝑝(𝜆)d𝜆 = ∫

∞

𝜆(𝑞𝑠)
𝑝(𝜆)d𝜆 + ∫

𝜆(𝑞𝑠)

𝜆
𝑝(𝜆)d𝜆 = 𝑞𝑠 + ∫

𝜆(𝑞𝑠)

𝜆
𝑝(𝜆)d𝜆. (16)

The integration limit 𝜆(𝑞𝑠) cannot be calculated directly using the variational method. We thus used771

the value of 𝜆𝑠(𝑞𝑠 ≈ 𝑞0) (Methods) from simulations of the ERM with a large 𝑁 = 1024 as an approx-772

imation. Furthermore, we employed a smoothing technique to reduce bias in the estimation of773

𝜆𝑠(𝑞𝑠) due to the leading zigzag eigenvalues (i.e., the largest eigenvalues) of the eigenspectrum.774

Specifically, we determined the nearest rank 𝑗 < 𝑁𝑞0 and then smoothed the eigenvalue log 𝜆𝑠(𝑞𝑠)775

on the log-log scale using the formula log 𝜆𝑠(𝑞𝑠) =
1
3

2
∑

𝑖=0
log 𝜆𝑠( 𝑗+𝑖

𝑁
) and log 𝑞𝑠 =

1
3

2
∑

𝑖=0
log 𝑗+𝑖

𝑁
, averaging776

over 100 ERM simulations.777

778

Note that we can alternatively use the high-density theory (Appendix 2) to compute the integra-779

tion limit 𝜆(𝑞𝑠 = 1∕𝑁) instead of resorting to simulations. However, since the true value deviates780

from the 𝜆ℎ(𝑞𝑠 = 1∕𝑁) derived from high-density theory, this approach introduces a constant bias781

(Appendix 1—figure 6) when computing the integral in eq. (16). Therefore we used the simulation782

value 𝜆𝑠(𝑞𝑠 ≈ 𝑞0) when producing Appendix 1—figure 6AB.783

784

Next, we describe how each term within the integral of eq. (15) was numerically estimated. First,785

we calculated 𝜕 log 𝑞
𝜕 log 𝜌

with a similar method described in Methods. Briefly, we calculated 𝑞0(𝜆) for786

density 𝜌0 = 𝑁0
𝐿𝑑

and 𝑞𝑠(𝜆) for density 𝜌𝑠 = 𝑁𝑠
𝐿𝑑
, and then used the finite difference 1

log(𝜌0∕𝜌𝑠)
|Δ log 𝑞(𝜆)|.787

Second, 𝜕 log 𝑞(𝜆)
𝜕 log 𝜌

was evaluated at 𝜆 = 𝜆(𝑞1) + 𝑖
𝜆(𝑞0)−𝜆(𝑞1)

𝑘−1
, where 𝑖 = 0, 1, 2,… , 𝑘 − 1, and we used 𝑘 = 20.788

Finally, we performed a cubic spline interpolation of the term 𝜕 log 𝑞
𝜕 log 𝜌

, and obtained the theoretical CI789

by an integration of eq. (15). Appendix 1—figure 6A,B shows a comparison between theoretical CI790

and that obtained by numerical simulations of ERM (Methods).791

Fitting ERM to data792

Estimating the ERM parameters793

Our ERMmodel has 4 parameters: 𝜇 and 𝜖 dictate the kernel function 𝑓 (𝑥⃗), whereas the box size 𝐿794

and the embedding dimension 𝑑 determine the neuronal density 𝜌. In the following, we describe an795

approximate method to estimate these parameters from pairwise correlations measured experi-796

mentally 𝑅𝑖𝑗 =
𝐶𝑖𝑗
𝜎𝑖𝜎𝑗

. We proceed by deriving a relationship between the correlation probability den-797

sity distribution ℎ(𝑅) and the pairwise distance probability density distribution 𝑔(𝑢) ∶= 𝑔(‖𝑥⃗1 − 𝑥⃗2‖)798

in the functional space, from which the parameters of the ERM can be estimated.799

Consider a distribution of neurons in the functional space with a coordinate distribution 𝑝(𝑥⃗).800

The pairwise distance density function 𝑔(𝑢) is related to the spatial point density by the following801
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formula:802

𝑔(𝑢) = ∫[0,𝐿]𝑑
𝑝(𝑥⃗1)𝑝(𝑥⃗2)𝛿(‖𝑥⃗1 − 𝑥⃗2‖ − 𝑢)d𝑥⃗1d𝑥⃗2 (17)

For ease of notation, we subsequently omit the region of integration, which is the same as here.803

In the case of a uniform distribution, 𝑝(𝑥⃗1) = 𝑝(𝑥⃗2) = 1∕𝑉 = 1∕𝐿𝑑 . For other spatial distributions,804

eq. (17) cannot be explicitly evaluated. We therefore make a similar approximation by focusing on805

a small pairwise distance (i.e., large correlation):806

𝑝(𝑥⃗1) ≈ 𝑝(𝑥⃗2) ≈ 𝑝(
𝑥⃗1 + 𝑥⃗2

2
) (18)

By a change of variables:807

𝑋⃗ =
𝑥⃗1 + 𝑥⃗2

2
, 𝑢 = 𝑥⃗1 − 𝑥⃗2,

eq. (17) can be rewritten as808

𝑔(𝑢) ≈ ∫ 𝑝2(𝑋⃗)𝛿(‖𝑢‖ − 𝑢)d𝑋⃗d𝑢 = 𝑆𝑑−1(𝑢)∫ 𝑝2(𝑋⃗)d𝑋⃗
(19)

where 𝑆𝑑−1(𝑢) is the surface area of 𝑑−1 sphere with radius 𝑢. Note that the approximation of 𝑔(𝑢) is809

not normalized to 1, as Eq. (19) provides an approximation valid only for small pairwise distances810

(i.e., large correlation). Therefore, we believe this does not pose an issue.811

812

With the approximate power-law kernel function 𝑅 = 𝑓 (𝑢) ≈ ( 𝜖
𝑢
)𝜇 , the probability density function813

of pairwise correlation ℎ(𝑅) is given by:814

ℎ(𝑅) = 𝑔(𝑢)
|

|

|

|

d𝑢
d𝑅

|

|

|

|

= 2𝜋
𝑑
2 𝜖𝑑

Γ( 𝑑
2
)𝜇𝑅(𝜇+𝑑)∕𝜇 ∫ 𝑝2(𝑋⃗)d𝑋⃗ (20)

Taking the logarithm on both sides815

logℎ(𝑅) = log
(

𝜖𝑑 ∫ 𝑝2(𝑋⃗)d𝑋⃗
)

+ log 2𝜋
𝑑
2

Γ( 𝑑
2
)𝜇

−
𝜇 + 𝑑
𝜇

log𝑅 (21)
eq. (21) is the key formula for ERM parameters estimation. In the case of a uniform spatial distri-816

bution, 𝜖𝑑 ∫ 𝑝2(𝑋⃗)d𝑋⃗ = 𝜖𝑑∕𝑉 = (𝜖∕𝐿)𝑑 . For a given dimension 𝑑, we can therefore estimate 𝜇 and817

(𝜖∕𝐿)𝑑 separately by fitting ℎ(𝑅) on the log-log scale using the linear least squares. Lastly, we fit the818

distribution of 𝜎2 (the diagonal entries of the covariance matrix 𝐶) to a log-normal distribution by819

estimating the maximum likelihood.820

821

There is a redundancy between the unit of the functional space (using a rescaled 𝜖𝛿 ≡ 𝜖∕𝛿) and822

the unit of 𝑓 (𝑥⃗) (using a rescaled 𝑓𝛿(𝑥⃗) ≡ 𝑓 (𝑥⃗∕𝛿)), thus 𝜖 and 𝐿 are a pair of redundant parame-823

ters: once 𝜖 is given, 𝐿 is also determined. We set 𝜖 = 0.03125 throughout the article. In summary,824

for a given dimension 𝑑 and 𝜖, 𝜇 of 𝑓 (𝑥⃗) (eq. (11)), the distribution of 𝜎2 and 𝜌 (or equivalently 𝐿)825

can be fitted by comparing the distribution of pairwise correlations in experimental data and ERM.826

Furthermore, knowing (𝜖∕𝐿)𝑑 enables us to determine a fundamental dimensionless parameter827

𝜌𝜖𝑑 ∶= 𝑁(𝜖∕𝐿)𝑑 ,

which tells us whether the experimental data are better described by the high-density theory or the828

Gaussian variational method (Appendix 2). Indeed, the fitted 𝜌𝜖𝑑 ∼ 10−3 − 100 is much smaller than829

1, consistent with our earlier conclusion that neural data are better described by an ERMmodel in830

the intermediate-density regime.831

832

25 of 92



Notably, we found that a smaller embedding dimension 𝑑 ≤ 5 gave a better fit to the overall pair-833

wise correlation distribution. The following is an empirical explanation. As 𝑑 grows, to best fit the834

slope of logℎ(𝑅)−log𝑅, 𝜇will also grow. However, for very high dimensions 𝑑, the y-intercept would835

become very negative, or equivalently, the fitted correlation would become extremely small. This836

can be verified by examining the leading order log𝑅 independent term in eq. (21), which can be837

approximated as 𝑑 log 𝜖
𝐿
+ 𝑑

2

(

log𝜋 + 1 − log 𝑑
2

). It becomes very negative for large 𝑑 since 𝜖 ≪ 𝐿838

by construction. Throughout this article, we use 𝑑 = 2 when fitting the experimental data with our839

ERM model.840

841

The above calculation can be extended to the caseswhere the coordinate distribution 𝑝(𝑥⃗)becomes842

dependent on other parameters. To estimate the parameters in coordinate distributions that can843

generate ERMs with a similar pairwise correlation distribution (Appendix 1—figure 9), we fixed the844

integral value ∫ 𝑝2(𝑥⃗)d𝑥⃗. Consider, for example, a transformation of the uniform coordinate distri-845

bution to the normal distribution (𝜇𝑝 = 0, 𝜎2
𝑝𝐈) in ℝ2. We imposed ∫ 𝑝2(𝑥⃗)d𝑥⃗ = 1∕(4𝜋𝜎2

𝑝 ) = 1∕𝐿2. For846

the log-normal distribution, a similar calculation led to 𝐿 exp(𝜎2
𝑝∕4−𝜇𝑝) = 2

√

𝜋𝜎𝑝. The numerical val-847

ues for these parameters are shown in Methods. However, note that due to the approximation we848

used (eq. (18)), our estimate of the ERM parameters becomes less accurate if the density function849

𝑝(𝑥⃗) changes rapidly over a short distance in the functional space. More sophisticated methods,850

such as grid search, may be needed to tackle such a scenario.851

852

After determining the parameters of the ERM, we first examine the spectrum of the ERM with853

uniformly distributed random functional coordinates 𝑥⃗𝑖 ∈ [0, 𝐿]𝑑 (Appendix 1—figure 10M-R). Sec-854

ond, we use 𝑓 (𝑥⃗) to translate experimental pairwise correlations into pairwise distances for all neu-855

rons in the functional space (Appendix 1—figure 11, Appendix 1—figure 10G-L). The embedding856

coordinates 𝑥⃗𝑖 in the functional space can then be solved through Multidimensional Scaling (MDS)857

by minimizing the Sammon error (Methods). The similarity between the spectra of the uniformly858

distributed coordinates (Appendix 1—figure 10M-R) and those of the embedding coordinates (Ap-859

pendix 1—figure 10G-L) is also consistent with the notion that specific coordinate distributions in860

the functional space have little impact on the shape of the eigenspectrum (Appendix 1—figure 9).861

Nonnegativity of data covariance862

To use ERM to model the covariance matrix, the pairwise correlation is given by a non-negative863

kernel function 𝑓 (𝑥⃗) that monotonically decreases with the distance between neurons in the func-864

tional space. This nonnegativeness brings about a potential issue when applied to experimental865

data, where, in fact, a small fraction of pairwise correlations/covariances are negative. We have866

verified that the spectrum of the data covariance matrix (Appendix 1—figure 18) remains virtually867

unchanged when replacing these negative covariances with zero (Appendix 1—figure 18). This con-868

firms that the ERM remains a goodmodel when the neural dynamics is in a regime where pairwise869

covariances aremostly positiveDahmen et al. (2019) (see also Appendix 1—figure 2B, Appendix 1—870

figure 2B-D).871

Multidimensional Scaling (MDS)872

With the estimated ERM parameters (𝜇 in 𝑓 (𝑥⃗) and the box size 𝐿 for given 𝜖 and 𝑑, see Methods),873

we performed MDS to infer neuronal coordinates 𝑥⃗𝑖 in functional space. First, we computed a874

pairwise correlation𝑅𝑖𝑗 =
𝐶𝑖𝑗
𝜎𝑖𝜎𝑗

from the data covariances. Next, we calculated the pairwise distance,875

denoted by 𝑢∗𝑖𝑗 , by computing the inverse function of 𝑓 (𝑥⃗) with respect to the absolute value of876

𝑅𝑖𝑗 , 𝑢∗𝑖𝑗 = 𝑓−1(|𝑅𝑖𝑗|). We used the absolute value |𝑅𝑖𝑗| instead of 𝑅𝑖𝑗 as a small percentage of 𝑅𝑖𝑗877

are negative (Appendix 1—figure 2A-D) where the distance is undefined. This substitution by the878

absolute value serves as a simple workaround for the issue and is only used here in the analysis879

to infer the neuronal coordinates by MDS. Finally, we estimated the embedding coordinates 𝑥⃗𝑖880

for each neuron by the SMACOF algorithm (Scaling by MAjorizing a COmplicated Function ), which881
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minimizes the Sammon error882

𝐸 = 1
∑

𝑖<𝑗
𝑢∗𝑖𝑗

∑

𝑖<𝑗

(𝑢∗𝑖𝑗 − 𝑢𝑖𝑗)
2

𝑢∗𝑖𝑗
(22)

where 𝑢𝑖𝑗 = ‖𝑥⃗𝑖 − 𝑥⃗𝑗‖ is the pairwise distance in the embedding space calculated above.883

884

To reduce errors at large distances (i.e., small correlations with 𝑅𝑖𝑗 < 𝑓 (𝐿), where 𝐿 is the esti-885

mated box size), we performed a soft cut-off at a large distance:886

𝑢∗𝑖𝑗 = 𝑓−1(|𝑅𝑖𝑗|), 𝑅𝑖𝑗 ≥ 𝑓 (𝐿)

𝑢∗𝑖𝑗 = 𝐿 log(𝑓−1(|𝑅𝑖𝑗|)∕𝐿) + 𝐿, 𝑅𝑖𝑗 < 𝑓 (𝐿)
(23)

During the optimization process, we started at the embedding coordinates estimated by the clas-887

sical MDS Cox and Cox (2000), with an initial sum of squares distance error that can be calculated888

directly, and ended with an error or its gradient smaller than 10−4.889

890

The fitted ERM with the embedding coordinates 𝑥⃗𝑖 reproduced the experimental covariance ma-891

trix including the cluster structures (Appendix 1—figure 11) and its sampling eigenspectra (Ap-892

pendix 1—figure 10).893

Canonical-Correlation Analysis (CCA)894

Here we briefly explain the CCA method Knapp (1978) for completeness. The basis vectors 𝑣func895

and 𝑣anat, in functional and anatomical space, respectively, were found by maximizing the corre-896

lation 𝑅CCA = 𝑐𝑜𝑟𝑟({𝑣func ⋅ 𝑥⃗𝑖}, {𝑣anat ⋅ 𝑦𝑖}). These basis vectors satisfy the condition that the projec-897

tions of the neuron coordinates along them, {𝑥⃗𝑖 ⋅ 𝑣func} and {𝑦𝑖 ⋅ 𝑣anat}, are maximally correlated898

among all possible choices of 𝑣func and 𝑣anat. Here {𝑥⃗𝑖}, {𝑦𝑖} represent the coordinates in functional899

and anatomical spaces, respectively. The resulting maximum correlation is 𝑅CCA. To check the900

significance of the canonical correlation, we shuffled the functional space coordinates {𝑥⃗𝑖} across901

neurons’ identity and re-calculated the canonical correlation with the anatomical coordinates, as902

shown in Appendix 1—figure 13.903

904

To study the effect of functional-anatomical relation described by 𝑅CCA in the ERM model, we gen-905

erated three dimensional anatomical coordinates {𝑦𝑖} and two dimensional functional coordinates906

{𝑥⃗𝑖} for each neuron which are jointly five-dimensional zero-mean multivariate Gaussian random907

variables. The coordinates are independent among each other, except for the first dimension {𝑥⃗1𝑖 }908

of the functional coordinates and the first dimension {𝑦1𝑖 }, which are assigned to have a corre-909

lation coefficient equals to 𝑅CCA. The variances of the coordinates are 𝜎2
𝑦1 = 1, 𝜎2

𝑦2 = 1, 𝜎2
𝑦3 = 1910

and 𝜎2
𝑥1 = 2, 𝜎2

𝑥2 = 1 for the numerics in Appendix 1—figure 21. Under this construction, the first911

canonical correlation between the anatomical and functional coordinates equals𝑅CCA, and the first912

canonical direction 𝑣anat in the anatomical space is (1, 0, 0)𝑇 and the first canonical direction 𝑣func in913

the functional space is (1, 0)𝑇 .914

Extensions of ERM and factors not affecting the scale invariance915

In Appendix 1—figure 9 we considered five additional types of spatial density distributions (coordi-916

nate distributions) in functional space and two additional functional space geometries. We exam-917

ined the points distributed according to the uniformdistribution (𝑥⃗ ∼ 1∕𝐿𝑑 ), the normal distribution918

(𝑥⃗ ∼  (𝜇𝑝, 𝜎2
𝑝𝐈)), and the log-normal distribution (log 𝑥⃗ ∼  (𝜇𝑝, 𝜎2

𝑝𝐈)). We used themethod described919

in Methods to adjust the parameters of the coordinate distributions based on the uniform distri-920

bution case, so that they all generate similar pairwise correlation distributions. The relationships921

between these parameters are described in Methods Methods. In Appendix 1—figure 9B, we used922

the following parameters: 𝑑 = 2; 𝐿 = 10 for the uniform distribution; 𝜇𝑝 = 0, 𝜎𝑝 = 2.82 for the normal923

distribution; and 𝜇𝑝 = 2, 𝜎𝑝 = 0.39 for the log-normal distribution.924
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925

Second, we introduced multiple clusters of neurons in the functional space, with each cluster uni-926

formly distributed in a box. We considered three arrangements: (1) two closely situated clusters927

(with a box size of 𝐿 = 5
√

2, the distance between two cluster centers being 𝐿𝑐 = 𝐿), (2) two dis-928

tantly situated clusters (with a box size of 𝐿 = 5
√

2 and the distance between clusters 𝐿𝑐 = 4𝐿), and929

three clusters arranged symmetrically in an equilateral triangle (with a box size of 𝐿 = 10∕
√

3 and930

the distance between clusters 𝐿𝑐 = 𝐿).931

932

Finally, we examined the scenario in which the points were uniformly distributed on the surface of933

a sphere (4𝜋𝑙2 = 𝐿2, 𝑙 being the radius of the sphere) or a hemisphere (2𝜋𝑙2 = 𝐿2) embedded in ℝ3
934

(the pairwise distance is that in ℝ3). It should be noted that both cases have the same surface area935

as the 2D box.936

Analyzing the effects of removing neural activity data during hunting937

To identify and remove the time frames corresponding to putative hunting behaviors, the following938

procedure was used. The hunting interval was defined as 10 frames (1 sec) preceding the onset939

of an eye convergence (see Methods Methods) to 10 frames after the offset of this eye conver-940

gence. These frames were then excluded from the data before recalculating the covariance matrix941

(see Methods Methods) and subsequently the sampled eigenspectra (Appendix 1—figure 15B, Ap-942

pendix 1—figure 16B,D,F,H). As a control to the removal of the hunting frame, an equal number of943

time frames that are not within those hunting intervals were randomly selected and then removed944

and analyzed (Appendix 1—figure 15C, Appendix 1—figure 16A,C,E,G). The number of hunting in-945

terval frames and total recording frames for five fish exhibiting hunting behaviors are as follows:946

fish 1 - 268/7495, fish 2 - 565/9774, fish 3 - 2734/13904, fish 4 - 843/7318 and fish 5 - 1066/7200.947

Fish 6 (number of time frames: 9388) was not exposed to a prey stimulus and, therefore, was ex-948

cluded from the analysis.949

950

To assess the impact of hunting removal on CI, we calculated the CI of the covariance matrix using951

all neurons recorded in each fish (without sampling to 1024 neurons). For the control case, we952

repeated the removal of the nonhunting frame 10 times to generate 10 covariance matrices and953

computed their CIs. We used a one-sample t-test to determine the level of statistical significance954

between the control CIs and the CI obtained after removal of the hunting frame.955

956

Using fitted ERM parameters by full data, we performed a MDS on the control data and hunting-957

removed data to infer the functional coordinates. Note that the functional coordinates inferred958

by MDS are not unique: rotations and translations give equivalent solutions. For visualization pur-959

poses (not needed for analysis), we first used the Umeyama algorithm to optimally align the func-960

tional coordinates of control and hunting-removed data.961

962

To identify distinct clusterswithin the functional coordinates, wefitGaussianMixtureModels (GMMs)963

using the "GaussianMixtures" package in Julia. We chose the number of clusters𝐾 based on giving964

the smallest Bayesian InformationCriterion (BIC) score. After fitting theGMMs, a list of probabilities965

𝑝𝑖𝑘, 𝑘 = 1, 2,… , 𝐾 was given for each neuron 𝑖 specifying the probability of the neuron belonging to966

the cluster 𝑘. The mean and covariance parameters were estimated for each Gaussian distributed967

cluster. For visualization (but not for analysis), a neuron was colored according to cluster 𝑘∗ where968

𝑘∗ = argmax1≤𝑘≤𝐾 𝑝𝑖𝑘.969

970

We used the following method to measure the size of the cluster and its fold change. For a 2D971

(recall 𝑑 = 2 in our ERM) Gaussian distributed cluster, let us consider an ellipse centered on its972

mean, and its axes are aligned with the eigenvectors of its covariance matrix 𝐶2×2. Let the eigen-973

values of 𝐶 be 𝜆1, 𝜆2. Then we set the length of the half-axis of the ellipse to be 𝑐√𝜆𝑖, respectively.974
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Here 𝑐 > 0 is a constant determined below. Note that the ellipse axes correspond to linear combi-975

nations of 2D Gaussian random variables that are independent and 𝜆𝑖 ’s are the variance of these976

linear combinations. From this fact, it is straightforward to show that the probability that a sample977

from the Gaussian cluster lies in the above ellipse depends only on 𝑐, that is, 1−𝑒− 𝑐2
2 , and not on the978

shape of the cluster. So, the ellipse represents a region that covers a fixed proportion of neurons979

for any cluster, and its area can be used as a measure for the size of the Gaussian cluster. Note980

that the area of the ellipse is 𝜋𝑐2√𝜆1𝜆2 = 𝜋𝑐2
√

det(𝐶). In Appendix 1—figure 17, we plot the ellipses981

to help visualize the clusters and their changes. We choose 𝑐 such that the ellipse covers 95% of982

the probability (that is, the fraction of neurons belonging to the cluster).983

984

In the control functional map where we fit the GMMs, we directly calculated the size measure985

𝜋𝑐2
√

det(𝐶) from the estimated covariance 𝐶 for each Gaussian cluster. In the hunting-removed986

functional map, we needed to estimate the covariance 𝐶 ′ for neurons belonging to a cluster 𝑘987

under the new coordinates (we assume that the new distribution can still be approximated by a988

Gaussian distribution). We performed this estimation in a probabilistic manner to avoid issues of989

highly overlapping clusters where the cluster membership could be ambiguous for some neurons.990

First, we estimated the center/mean of the new Gaussian distribution by991

(𝑥̄, 𝑦̄) ∶=

(

∑𝑁
𝑖=1 𝑝𝑖𝑘𝑥𝑖

∑𝑁
𝑖=1 𝑝𝑖𝑘

,
∑𝑁

𝑖=1 𝑝𝑖𝑘𝑦𝑖
∑𝑁

𝑖=1 𝑝𝑖𝑘

)

.

Here the summation goes over all the𝑁 neurons in the functional space and 𝑝𝑖𝑘 is themembership
probability defined above, and (

𝑥𝑖, 𝑦𝑖
) is the coordinate of neuron 𝑖 in the hunting-removed map.

Similarly, we can use a weighted average to estimate the entries in the covariance matrix 𝐶 ′ =
[

𝐶 ′
𝑥𝑥 𝐶 ′

𝑥𝑦

𝐶 ′
𝑦𝑥 𝐶 ′

𝑦𝑦

]

. For example,
𝐶̂ ′
𝑥𝑦 ∶=

∑𝑁
𝑖=1 𝑝𝑖𝑘

(

𝑥𝑖 − 𝑥̄
) (

𝑦𝑖 − 𝑦̄
)

∑𝑁
𝑖=1 𝑝𝑖𝑘

.

Then we calculated the size of the cluster on the new map as 𝜋𝑐2√det(𝐶̂ ′). Finally, we computed992

the fold change in size as
√

det(𝐶̂′)
det(𝐶)

.993

Renormalization-Group (RG) Approach994

Here we briefly summarize the RG approach used in Meshulam et al. (2019) and elucidate the995

adjustments required when applying the RG approach to ERM. The method consists of two stages:996

(i) iterative agglomerate clustering of neurons, and (ii) computing the spectrum of a block of the997

original covariance matrix corresponding to a cluster of the desired size based on the previous998

clustering result.999

Stage (i): Iterative Clustering1000

We begin with 𝑁0 neurons, where 𝑁0 is assumed to be a power of 2. In the first iteration, we1001

compute Pearson’s correlation coefficients for all neuron pairs. We then search greedily for the1002

most correlated pairs and group the half pairs with the highest correlation into the first cluster;1003

the remaining neurons form the second cluster. For each pair (𝑎, 𝑏), we define a coarse-grained1004

variable according to:1005

𝑥𝑘𝑖 = 𝑍𝑘−1
𝑎𝑏 (𝑥𝑘−1𝑎 + 𝑥𝑘−1𝑏 ), (24)

where 𝑍𝑘−1
𝑎𝑏 normalizes the average to ensure unit nonzero activity. This process reduces the num-1006

ber of neurons to 𝑁1 = 𝑁0∕2. In subsequent iterations, we continue grouping the most correlated1007

pairs of the coarse-grained neurons, iteratively reducing the number of neurons by half at each1008

step. This process continues until the desired level of coarse-graining is achieved.1009
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1010

When applying the RG approach to ERM, instead of combining neural activity, we merge correla-1011

tion matrices to traverse different scales. During the 𝑘th iteration, we compute the coarse-grained1012

covariance as:1013

𝑐𝑘𝑖𝑗 = 𝑐𝑘−1𝑎𝑏 + 𝑐𝑘−1𝑎𝑐 + 𝑐𝑘−1𝑏𝑐 + 𝑐𝑘−1𝑏𝑑 (25)
and the variance as:1014

𝑐𝑘𝑖𝑖 = 𝑐𝑘−1𝑎𝑎 + 𝑐𝑘−1𝑏𝑏 + 2𝑐𝑘−1𝑎𝑏 (26)
Following these calculations, we normalize the coarse-grained covariancematrix to ensure that1015

all variances are equal to one. Note that these coarse-grained covariances are only used in stage1016

(i) and not used to calculate the spectrum.1017

1018

Stage (ii): Eigenspectrum Calculation1019

The calculation of eigenspectra at different scales proceeds through three sequential steps. First,1020

for each cluster identified in Stage (i), we compute the covariance matrix using the original firing1021

rates of neurons within that cluster (not the coarse-grained activities). Second, we calculate the1022

eigenspectrum for each cluster. Finally, we average these eigenspectra across all clusters at a1023

given iteration level to obtain the representative eigenspectrum for that scale.1024

1025

In stage (ii), we calculate the eigenspectra of the sub-covariance matrices across different cluster1026

sizes as described in Meshulam et al. (2019). Let 𝑁0 = 2𝑛 be the original number of neurons. To1027

reduce it to size 𝑁 = 𝑁0∕2𝑘 = 2𝑛−𝑘, where 𝑘 is the kth reduction step, consider the coarse-grained1028

neurons in step 𝑛− 𝑘 in stage (i). Each coarse-grained neuron is a cluster of 2𝑛−𝑘 neurons. We then1029

calculate spectrum of the block of the original covariancematrix corresponding to neurons of each1030

cluster (there are 2𝑘 such blocks). Lastly, an average of these 2𝑘 spectra is computed.1031

1032

For example, when reducing from 𝑁0 = 23 = 8 to 𝑁 = 23−1 = 4 neurons (𝑘 = 1), we would have1033

two clusters of 4 neurons each. We calculate the eigenspectrum for each 4x4 block of the original1034

covariance matrix, then average these two spectra together. To better understand this process1035

through a concrete example, consider a hypothetical scenario where a set of eight neurons, la-1036

beled 1, 2, 3, ..., 7, 8, are subjected to a two-step clustering procedure. In the first step, neurons1037

are grouped based on their maximum correlation pairs, for example, resulting in the formation1038

of four pairs: {1, 2}, {3, 4}, {5, 6}, and {7, 8} (see Appendix 1—figure 22). Subsequently, the neurons1039

are further grouped into two clusters based on the results of the RG stepmentioned above. Specif-1040

ically, if the correlation between the coarse-grained variables of the pair {1, 2} and the pair {3, 4} is1041

found to be the largest among all other pairs of coarse-grained variables, the first group consists1042

of neurons {1, 2, 3, 4}, while the second group contains neurons {5, 6, 7, 8}. Next, take the size of1043

the cluster 𝑁 = 4 for example. The eigenspectra of the covariance matrices of the four neurons1044

within each cluster are computed. This results in two eigenspectra, one for each cluster. The corre-1045

lation matrices used to compute the eigenspectra of different sizes do not involve coarse-grained1046

neurons. It is the real neurons 1, 2, 3, ..., 7, 8, but with expanding cluster sizes. Finally, the average1047

of the eigenspectra of the two clusters is calculated.1048

Spectrum of three types of sampling procedures in ERMmodel1049

In Result we have considered three types of sampling procedures: random sampling (RSap), spa-1050

tial sampling in the anatomical space (ASap, e.g., recording neurons in a brain region), and spatial1051

sampling in the functional space (FSap), namely spatial sampling in functional space by subdividing1052

the space into smaller regions, is equivalent to the previously reported renormalization group (RG)1053
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inspired process Bradde and Bialek (2017);Meshulam et al. (2018). Here we consider the relation-1054

ship between the spectrum of three types of sampling procedures.1055

1056

We assume a uniform random distribution of neurons in a 𝑑-dimensional functional space, [0, 𝐿]𝑑 .1057

For RSap procedures, the resulting neuronal density 𝜌𝑅 is reduced to 𝜌𝑅 = 𝑘𝜌0, with 𝑘 representing1058

the sampling ratio (𝑘 = 𝑁∕𝑁0) and 𝜌0 being the initial density. In contrast, FSap maintains the orig-1059

inal density, 𝜌𝐹 = 𝜌0. This constancy in neuronal density under FSap ensures that the covariance1060

eigenspectrum remains invariant across scales for any spatial correlation functions 𝑓 (𝑥⃗), such as1061

power law and exponential, as shown in Appendix 1—figure 19A,B,D,E. In contrast, RSap reduces 𝜌,1062

thus demanding more rigorous conditions to achieve a scale-invariant covariance spectrum (e.g.,1063

compare Appendix 1—figure 19A and C).1064

1065

Under ASap, sampled neurons are not spread out evenly in functional space, whereas our the-1066

oretical framework assumes a uniform distribution. To reconcile this discrepancy, we employ a1067

uniform approximation of the neural distribution. This approach involves introducing an effective1068

density, 𝜌′, defined as the spatial average of the density function 𝜌(𝑥⃗). This adjustment allows our1069

theoretical model to accommodate non-uniform distributions encountered in anatomically spatial1070

sampling.1071

𝜌′ ≡ ⟨𝜌(𝑥⃗)⟩ = ∫ 𝑝(𝑥⃗)𝜌(𝑥⃗)d𝑥⃗ = 𝑘𝑁0 ∫ 𝑝2(𝑥⃗)d𝑥⃗, (27)
where 𝑝(𝑥⃗) is the normalized density distribution (see Methods Methods).1072

1073

using the Cauchy-Schwarz inequality, we have1074

∫ 𝑝2(𝑥⃗)d𝑥⃗∫ d𝑥⃗ ≥ (∫ 𝑝(𝑥⃗)d𝑥⃗)2 (28)
thus 𝜌′ ≥ 𝑘𝜌0.1075

1076

According to the condition 𝑝(𝑥⃗) < 1
𝑘𝑉
, we have 𝜌′ ≤ 𝜌0, intuitively, sampling within a uniformly1077

distributed neuron population does not increase the density.1078

1079

So we have 𝜌0 ≥ 𝜌′𝐴 ≥ 𝑘𝜌0, i.e., 𝜌𝐹 ≥ 𝜌′𝐴 ≥ 𝜌𝑅. Thus the spectrum ASap should be between FSap1080

and RSap.1081

Dimensions of three types of sampling procedures in ERMmodel1082

Scaling of Dimensions through Random Sampling1083

Let us revisit the definition of the Participation Ratio (PR) dimension as defined in Equation eq. (5):1084

𝐷PR(𝐶) =
(
∑

𝑖 𝜆𝑖
)2

∑

𝑖 𝜆
2
𝑖

=
(Tr(𝐶))2

Tr(𝐶2)
=

𝑁2E(𝜎2)2

𝑁E(𝜎4) +𝑁(𝑁 − 1)E𝑖≠𝑗(𝐶2
𝑖𝑗)

(29)
1085

1086

During the random sampling process, the expected values 𝐸(𝜎2), 𝐸(𝜎4), and E𝑖≠𝑗(𝐶2
𝑖𝑗) remain con-1087

stant. These constants allow for the estimation of the PR dimension across various scales using:1088

𝐷RSap
PR =

𝑘𝑁0E(𝜎2)2

E(𝜎4) + (𝑘𝑁0 − 1)E𝑖≠𝑗(𝐶2
𝑖𝑗)

(30)
Here, 𝑘 = 𝑁∕𝑁0 represents a scaling factor (fraction) associated with sampling. The key question1089

is to understand how the dimensionality changes with 𝑘. Under random sampling, as 𝑘 increases,1090

the dimensionality will quickly approaches a saturating point defined by eq. (1).1091
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Scaling of Dimensions through Functional Sampling1092

In this section, we leverage the uniform ERM model to estimate dimensions within the context of1093

functional sampling, specifically focusing on the estimation of squared pairwise covariance E𝑖≠𝑗(𝐶2
𝑖𝑗)1094

and dimensionality.1095

1096

Adopting an approximation for a power-law kernel function 𝑓 (𝑥) ≈ 𝜖𝜇‖𝑥‖−𝜇 allows us to express1097

the expected value of the squared covariance E𝑖≠𝑗(𝐶2
𝑖𝑗) as follows:1098

E𝑖≠𝑗(𝐶2
𝑖𝑗) = ∫[0,𝐿]𝑑

𝑝(𝑥⃗1)𝑝(𝑥⃗2)𝑓 2(‖𝑥⃗1 − 𝑥⃗2‖)d𝑥⃗1d𝑥⃗2

≈ ∫[0,𝐿]𝑑
𝑝(𝑥⃗1)𝑝(𝑥⃗2)𝜖2𝜇‖𝑥⃗1 − 𝑥⃗2‖−2𝜇d𝑥⃗1d𝑥⃗2.

(31)

1099

For a set subjected to functional sampling with a sampling fraction 𝑘, this procedure adjusts the1100

size of the functional space in the ERM model by a factor of 𝑘−1∕𝑑 . Consequently, the E𝑘𝑖≠𝑗(𝐶
2
𝑖𝑗) for1101

the sampled fraction 𝑘 is given by:1102

E𝑘𝑖≠𝑗(𝐶
2
𝑖𝑗) = ∫[0,𝑘1∕𝑑𝐿]𝑑

𝑝(𝑥⃗1)𝑝(𝑥⃗2)𝑓 2(‖𝑥⃗1 − 𝑥⃗2‖)d𝑥⃗1d𝑥⃗2

= ∫[0,𝐿]𝑑
𝑝(𝑥⃗1)𝑝(𝑥⃗2)𝑓 2(𝑘1∕𝑑‖𝑥⃗1 − 𝑥⃗2‖)d𝑥⃗1d𝑥⃗2

≈ ∫[0,𝐿]𝑑
𝑝(𝑥⃗1)𝑝(𝑥⃗2)𝜖2𝜇𝑘−2𝜇∕𝑑‖𝑥⃗1 − 𝑥⃗2‖−2𝜇d𝑥⃗1d𝑥⃗2

≈ 𝑘−2𝜇∕𝑑E𝑖≠𝑗(𝐶2
𝑖𝑗),

(32)

1103

1104

Here we assume that 𝐸[𝜎2] and 𝐸[𝜎4] are constant across the sampling process. This model en-1105

ables the estimation of the ratio 𝜇∕𝑑 as detailed in the Methods Methods.1106

𝐷FSap
PR ≈

𝑘𝑁0E(𝜎2)2

E(𝜎4) + (𝑘𝑁0 − 1)𝑘−2𝜇∕𝑑E𝑖≠𝑗(𝐶2
𝑖𝑗)

(33)
1107

1108

In the large𝑁 limit, we observe distinct behaviors in the evolution of dimensionality in both theory1109

and data: it saturates in RSap (dashed line in Figure 5D), namely 𝐷RSap
PR ≈ 𝐷PR defined in eq. (1),1110

whereas it follows a different scaling relationship 𝐷FSap
PR ≈ 𝑘2𝜇∕𝑑𝐷PR in FSap (solid line in Figure 5D).1111

Comparative Analysis of PR Dimension Across sampling Techniques1112

This section examines the behavior of the Participation Ratio (PR) dimension under three sampling1113

techniques: anatomical sampling, random sampling, and functional sampling. We show that the1114

average PR dimension following anatomical sampling occupies a middle ground between the ex-1115

tremes presented by random and functional sampling.1116

1117

The PR dimension, denoted 𝐷PR, reflects the sampling impact and depends on the distribution1118

𝑝(𝑋⃗) of the functional coordinates 𝑋⃗. Defining the sampling fraction as 𝑘 = 1∕𝑞, the mean 𝐷PR is1119

represented as:1120

mean(𝐷PR) = 1
𝑞

𝑞
∑

𝑖=1
𝐷𝑖PR = 1

𝑞

𝑞
∑

𝑖=1
𝐽 (𝑝𝑖(𝑋⃗)), (34)

1121

1122

where the neuron set 1, 2, ..., 𝑁 is segmented into 𝑞 clusters {𝑋⃗1, 𝑋⃗2, ..., 𝑋⃗𝑞}, each comprising 𝑁
𝑞

1123
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neurons. The probability distribution 𝑝𝑖(𝑋⃗) corresponds to each cluster {𝑋⃗𝑖}. The probability distri-1124

bution for each cluster, 𝑝𝑖(𝑋⃗), emerges naturally from the sampling process.1125

1126

The equivalence of the mean probability density function across the sampled clusters to the origi-1127

nal set’s probability density function leads us to the condition:1128

1
𝑞

𝑞
∑

𝑖=1
𝑝𝑖(𝑋⃗) = 𝑝(𝑋⃗), (35)

1129

1130

This condition is a direct consequence of the sampling process, ensuring that the aggregated prob-1131

ability density function of all sampled sets mirrors the overall density distribution of the neurons.1132

1133

Applying the Lagrange multiplier method to optimize the mean 𝐷PR:1134

𝐿(𝑝, 𝜆) = 1
𝑞

𝑞
∑

𝑖=1
𝐽 (𝑝𝑖(𝑋⃗)) + ∫𝐷

d𝑑𝑋⃗𝜆(𝑋⃗)

(

1
𝑞

𝑞
∑

𝑖=1
𝑝𝑖(𝑋⃗) − 𝑝(𝑋⃗)

)

, (36)
1135

1136

Here 𝐿(𝑝, 𝜆) is the Lagrangian, 𝜆(𝑋⃗) is the Lagrange multiplier, we derive the optimal condition:1137

𝜕𝐿(𝑝, 𝜆)
𝜕𝑝𝑖

= 0, (37)
1138

1139

yielding:1140

1
𝑞

𝜕𝐽
𝜕𝑝𝑖(𝑋⃗)

+
𝜆(𝑋⃗)
𝑞

= 0. (38)
1141

1142

At the optimal mean 𝐷PR, each 𝑝(𝑋⃗𝑖) is equivalent, leading to 𝑝(𝑋⃗𝑖) = 𝑝(𝑋⃗𝑗) = 𝑝(𝑋⃗) (representa-1143

tive of random sampling). Hence, the mean𝐷PR post-random sampling sets the upper limit for the1144

mean 𝐷PR after anatomical sampling.1145

1146

Let us investigate the lower bound of the mean PR dimension with the ERM model. For the mini-1147

mization of mean(𝐷PR), a key requirement is the functional spatial proximity of neurons within the1148

same cluster, in other words, the neuron set should be distinctly separated in functional space.1149

Consequently, achieving the minimum mean PR dimension necessitates a functional sampling1150

strategy.1151

Derive upper bound of dimension from spectrum1152

To deduce 𝐷𝑃𝑅 from the spectrum, for simplicity, we focus on the high-density region, where we1153

have an analytical expression for 𝜆 that is valid for large eigenvalues:1154

𝜆𝑟 = 𝛾
( 𝑟
𝑁

)−1+ 𝜇
𝑑
⋅ 𝜌

𝜇
𝑑 = 𝛾𝑟−1+

𝜇
𝑑 𝐿−𝜇𝑁 for 𝑟 ≤ 𝛽(𝑁), (39)

where 𝐿 is the size of the functional space, 𝛾 is the coefficient in eq. (3), which depends on 𝑑, 𝜇,1155

and E(𝜎2). Note that the eigenvalue 𝜆𝑟 decays rapidly after the threshold 𝑟 = 𝛽(𝑁). Since we did not1156

discuss small eigenvalues in this article, we represent them here as an unknown function 𝜂(𝑟,𝑁,𝐿):1157

𝜆𝑟 = 𝜂(𝑟,𝑁,𝐿) for 𝑟 > 𝛽(𝑁) (40)
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As discussed in Methods, without changing the properties of the spectrum, we can always impose1158

E(𝜎2) = 1 such that1159
𝑁
∑

𝑟=1
𝜆𝑟 = Tr(𝐶) = 𝑁 (41)

We emphasize that this constraint requires that large and small eigenvalues behave differently be-1160

cause otherwise∑𝑁
𝑟=1 𝑟

−𝛼 with 𝛼 < 1 would scale as 𝑁1−𝛼 , and∑𝑁
𝑟=1 𝜆𝑟 is not proportional to 𝑁 .1161

1162

Using the Cauchy–Schwarz inequality, we have an upper bound of∑𝑁
𝑟=1 𝜆

2
𝑟 :1163

𝑁
∑

𝑟=1
𝜆2𝑟 ≤

(

∑

𝑟
𝜆𝑟

)2

= 𝑁2 (42)

On the other hand, 𝜆21 is a lower bound of∑𝑁
𝑟=1 𝜆

2
𝑟 :1164

𝑁
∑

𝑟=1
𝜆2𝑟 > 𝜆

2
1 = 𝐿−2𝜇𝑁2𝛾2 (43)

As a result, the dimensionality1165

𝐷𝑃𝑅 =

(

∑𝑁
𝑟=1 𝜆𝑟

)2

∑𝑁
𝑟=1 𝜆2𝑟

,

is bounded as1166

1 ≤ 𝐷𝑃𝑅 < 𝐿
2𝜇𝛾−2 (44)

Under random sampling, 𝐿 remains fixed. Thus, we must have a bounded dimensionality that is1167

independent of 𝑁 for our ERM model. A tighter lower bound of∑𝑁
𝑟=1 𝜆

2
𝑟 is1168

𝑁
∑

𝑟=1
𝜆2𝑟 > 𝛾

2𝐿−2𝜇𝑁2
𝛽(𝑁)
∑

𝑟=1

(

𝑟−2+2𝜇∕𝑑
) (45)

A tighter upper bound of participation ratio 𝐷𝑃𝑅 can be written as:1169

𝐷𝑃𝑅 =

(

∑𝑁
𝑟=1 𝜆𝑟

)2

∑𝑁
𝑟=1 𝜆2𝑟

<
𝐿2𝜇𝛾−2

∑𝛽(𝑁)
𝑟=1

(

𝑟−2+2𝜇∕𝑑
)
< 𝐿2𝜇𝛾−2 (46)

However, in functional sampling, enlarging the region size with constant density 𝜌 results in 𝐿 ∼1170

𝑁1∕𝑑 . Thus, the upper bound of 𝐷𝑃𝑅 should grow as 𝑁2𝜇∕𝑑 , consistent with the previously derived1171

result (eq. (33)) in Methods.1172

Simulating CCA and anatomical sampling1173

In this section, we estimate the dimensions of the anatomically sampled neuron set. For simplicity,1174

we assume that the functional coordinates of neurons, 𝑋𝑖, and the anatomical coordinates of neu-1175

rons, 𝑌𝑖, both follow a multivariate Gaussian distribution. We define anatomical sampling, which1176

involves sampling on 𝑌𝑖, along a direction chosen arbitrarily and denote this direction as 𝑌 𝐴. Subse-1177

quently, we perform sampling on 𝑋𝑖 in the direction denoted by 𝑋𝐴, which is determined to have1178

the highest correlation with 𝑌 𝐴 according to Canonical Correlation Analysis (CCA). This process ef-1179

fectively mimics the scenario of functional sampling.1180

1181

The key to calculating the PR dimension involves computing the expected value E𝑖≠𝑗(𝐶2
𝑖𝑗). In the1182

ERM model, the distribution of 𝐶𝑖𝑗 can be estimated by the distribution of points in the functional1183

space. This allows for the calculation of the PR dimension across anatomical sampling by compar-1184

ing the distribution of 𝑋𝑖 after anatomical sampling with that after functional sampling. We can1185

model the distribution of 𝑋𝐴 and 𝑌 𝐴 as follows:1186
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𝑅ASap = corr(𝑋𝐴, 𝑌 𝐴),

𝐶ASap = corr(𝑋𝐴, 𝑌 𝐴)𝜎𝑥𝜎𝑦,
[

𝑋𝐴

𝑌 𝐴

]

∼ 

([

0
0

]

,

[

𝜎2
𝑥 𝐶ASap

𝐶ASap 𝜎2
𝑦

])

,

(47)

Here we consider only the projection of the functional coordinate onto the direction 𝑋𝐴, which1187

exhibits the highest correlation, denoted by𝑅ASap, with 𝑌 𝐴. Specifically, when selecting the anatom-1188

ical direction as the first CCA direction, the correlation between 𝑋𝐴 and 𝑌 𝐴 reaches its maximum,1189

such that 𝑅ASap = 𝑅CCA. In this case, anatomical sampling results in the minimization of the dimen-1190

sionality.1191

1192

Now, let us perform anatomical sampling on the neurons. The 𝑋⃗𝑖 and 𝑌𝑖 denote the functional1193

and anatomical coordinates of the 𝑖th neuron cluster after anatomical sampling, respectively.1194

1195

To approximate, we need to calculate the functional coordinate probability distribution 𝑝(𝑋⃗𝑖) =1196

𝑝(𝑋⃗|𝑞𝑦𝑖𝑘 < 𝑌
𝐴 < 𝑞𝑦(𝑖+1)𝑘), which is the distribution of the 𝑖th neuron cluster after anatomical sampling.1197

𝑌 𝐴 represents the selected direction in anatomical space, and 𝑞𝑦𝑖𝑘 denotes the 𝑖𝑘th quantile of 𝑌 𝐴,1198

where 𝑘 is the sampled fraction. Note the following relationships and distributions:1199

𝑝(𝑋𝐴
|𝑌 𝐴 = 𝑦) =

𝑝(𝑋𝐴, 𝑌 𝐴 = 𝑦)
𝑝(𝑌 𝐴 = 𝑦)

,

𝑝(𝑋𝐴
|𝑌 𝐴 = 𝑦) ∼ 

(

𝑦
𝜎𝑥
𝜎𝑦
𝑅ASap, 𝜎2

𝑥(1 − 𝑅
2ASap)

)

.
(48)

𝑝(𝑋𝐴
𝑖 ) = 𝑝(𝑋𝐴

|𝑞𝑦𝑖𝑘 < 𝑌
𝐴 < 𝑞𝑦(𝑖+1)𝑘) =

1
𝑘 ∫

𝑞𝑦(𝑖+1)𝑘

𝑞𝑦𝑖𝑘

𝑝(𝑋𝐴
|𝑌 𝐴 = 𝑦)𝑑𝑦 (49)

1200

1201

The conditional probability distribution 𝑃 (𝑋𝐴
|𝑞𝑦𝑖𝑘 < 𝑌 𝐴 < 𝑞𝑦(𝑖+1)𝑘) is equivalent to the distribution1202

of the sum of 𝑌 𝐴
𝑖
𝜎𝑥
𝜎𝑦
𝑅ASap and 𝑋0, where 𝑋0 ∼  (0, 𝜎2

𝑥(1 − 𝑅
2ASap)):1203

𝑋𝐴
𝑖 = 𝑌 𝐴

𝑖

𝜎𝑥
𝜎𝑦
𝑅ASap +𝑋0, (50)

𝑝(𝑌 𝐴
𝑖 = 𝑦) =

⎧

⎪

⎨

⎪

⎩

1
𝑘
√

2𝜋𝜎𝑦
exp

(

− 𝑦2

2𝜎2𝑦

) for 𝑞𝑦𝑖𝑘 < 𝑦 < 𝑞𝑦(𝑖+1)𝑘,
0 otherwise. (51)

The computation of 𝑋𝐴
𝑖 involves two technical challenges: 1. The distribution of 𝑌 𝐴

𝑖 is repre-1204

sented by a non-elementary function (eq. (51)), which complicates the direct calculation of 𝑋𝐴
𝑖 ,1205

which is the sum of 𝑌 𝐴
𝑖 𝑅ASap𝜎𝑥∕𝜎𝑦 and𝑋0. To facilitate approximation, we model 𝑌 𝐴

𝑖 using a normal1206

distribution with equivalent variance. 2. Calculating the variance of 𝑌 𝐴
𝑖 presents direct challenges,1207

and the variance of 𝑌 𝐴
𝑖 differs across different neuron clusters 𝑖. Using a uniform distribution for1208

𝑌 simplifies this task (this assumption is only used to calculate the variance of 𝑌 𝐴
𝑖 ). Under this as-1209

sumption, the variance of 𝑌 𝐴
𝑖 can be straightforwardly calculated as Var(𝑌 𝐴

𝑖 ) = 𝑘2𝜎2
𝑦 . Consequently,1210

we approximate 𝑌 𝐴
𝑖 and 𝑋𝐴

𝑖 as follows:1211
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𝑌 𝐴
𝑖 ∼ 

(

𝑞𝑦𝑖𝑘 + 𝑞
𝑦
(𝑖+1)𝑘

2
, 𝑘2𝜎2

𝑦

)

, (52)

𝑋𝐴
𝑖 ∼ 

(

𝑞𝑦𝑖𝑘 + 𝑞
𝑦
(𝑖+1)𝑘

2
𝜎𝑥
𝜎𝑦
𝑅ASap, 𝜎2

𝑥(1 − 𝑅
2ASap + 𝑘2𝑅2ASap)

)

. (53)
1212

1213

Calculating the PR dimension directly from the distribution of 𝑋𝐴
𝑖 is difficult; thus, we approximate1214

anatomical sampling with fraction 𝑘 as functional sampling with fraction 𝑘𝑓 , leading to:1215

𝑘𝑓 =
√

1 + 𝑘2𝑅2ASap − 𝑅2ASap. (54)
Using the equation for functional sampling E𝑘𝑖≠𝑗(𝐶

2
𝑖𝑗) ≈ 𝑘−2𝜇∕𝑑E𝑖≠𝑗(𝐶2

𝑖𝑗) (eq. (32)):1216

E𝑘𝑖≠𝑗(𝐶
2
𝑖𝑗) ≈ (1 + 𝑘2𝑅2ASap − 𝑅2ASap)−𝜇∕𝑑E𝑖≠𝑗(𝐶2

𝑖𝑗). (55)

𝐷ASap
PR ≈

𝑘𝑁0E(𝜎2)2

E(𝜎4) + (𝑘𝑁0 − 1)(1 + 𝑘2𝑅2ASap − 𝑅2ASap)−𝜇∕𝑑E𝑖≠𝑗(𝐶2
𝑖𝑗)

(56)
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Appendix 11478

Appendix 1—figure 1. Related to Figure 2. Experimental data description. A. Spatial distribution ofsegmented ROIs (shown in different colors). There are 1347 to 3086 ROIs in each animal. Scale bar, 100µm. B.Explained variance of the activity data by PCs up to 500 rank. The different colored lines represent differentfish data (n=6).
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Appendix 1—figure 2. The phenomenon of scale-invariant eigenspectra across different datasets. A-D.Distribution of normalized pairwise covariances, where E(𝜎2𝑖 ) = 1 (Methods). E-H. Sampled covarianceeigenspectra of different datasets. I-L. Pdfs of sampled covariance matrix eigenspectra of different datasets.The datasets correspond to the following examples: column 1: fish data (from fish 1, all fish data are shown inAppendix 1—figure 10A-F) from whole brain light-field imaging; column 2: fish data from whole brainlight-sheet imaging; column 3: mouse data from multi-area Neuropixels recording; column 4: mouse datafrom two-photon visual cortex recording.
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Appendix 1—figure 3. Comparison between ERM simulation and theory. A-C. Rank plots of thenormalized eigenspectra (𝜆∕𝜌), with the simulations obtained using correlation matrix (sim: corr, 𝜎2𝑖 = 1) and
covariance matrix (sim: cov, neuron’s activity variance 𝜎2𝑖 is i.i.d. sampled from a log-normal distribution with
zero mean and a standard deviation of 0.5 in the natural logarithm of the 𝜎2𝑖 values; we also normalize
E(𝜎2𝑖 ) = 1 (Methods)). The curves between "sim: corr" and "sim: cov" are nearly identical in panels A and B. Thetheoretical predictions of normalized eigenvalues 𝜆∕𝜌 are obtained using the high-density theory (cyan,eq. (12)). The density 𝜌 decreases from panel A to panel C (𝜌 = 1024, 256, 10.24 respectively). D-F. Numericalvalidation of the theoretical spectrum by comparing probability density functions for increasing density ofcovariance ERM (𝜌 = 1024, 256, 10.24 respectively). Other simulation parameters: 𝑁 = 1024, 𝑑 = 2, 𝐿 = (𝑁∕𝜌)1∕𝑑 ,
𝜇 = 0.5, 𝜖 = 0.03125. The ERM simulations were conducted 100 times. The results are presented as the mean ±SEM.
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Appendix 1—figure 4. Covariance spectra under different kernel functions 𝑓 (𝑥⃗). The figure presentsboth the sampled eigenvalue rank plot and the pdf of ERM with different functions 𝑓 (𝑥⃗) and varyingdimensions 𝑑, where panels A-D,I,J. display the rank plot and panels E-H,K,L. show the pdf of ERM. A,E.
Exponential function 𝑓 (𝑥⃗) = 𝑒−

‖𝑥‖
𝑏 where 𝑏 = 1 and dimension 𝑑 = 2. B,F. Exponential function 𝑓 (𝑥⃗) = 𝑒−

‖𝑥‖
𝑏

where 𝑏 = 1 and dimension 𝑑 = 3. C,G. Gaussian pdf 𝑓 (𝑥⃗) = 𝑒
− ‖𝑥‖2

2𝜎2𝑥 where 𝜎2𝑥 = 0.1 and dimension 𝑑 = 2. D,H.
Gaussian pdf 𝑓 (𝑥⃗) = 𝑒

− ‖𝑥‖2

2𝜎2𝑥 where 𝜎2𝑥 = 0.1 and dimension 𝑑 = 3. I,K. t pdf (eq. (11)) and dimension 𝑑 = 2. J,L. tpdf (eq. (11)) and dimension 𝑑 = 3. The ERM simulations were conducted 100 times and each ERM used anidentical sampling technique described in (Methods). The results represent mean ± SEM.M. Summary of CI’sfor different 𝑓 (𝑥⃗) and 𝑑. On the x-axis labels, ’e’ denotes the Exponential function 𝑓 (𝑥⃗), ’g’ denotes theGaussian pdf 𝑓 (𝑥⃗), ’t’ denotes the t-distribution pdf 𝑓 (𝑥⃗), while ’2’ and ’3’ indicate 𝑑 = 2 or 𝑑 = 3, respectively.
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Appendix 1—figure 5. Impact of 𝜂 and 𝑑 on the scale invariance of covariance eigenspectra in the ERM
with 𝑓 (𝑥⃗) = 𝑒−‖𝑥⃗‖𝜂 . The columns from left to right correspond to 𝜂 = 0.3, 0.5, 0.7, 0.9, and the rows from top tobottom correspond to 𝑑 = 1, 2, 3 (eq. (2) and eq. (11)). Other ERM simulation parameters: 𝑁 = 4096, 𝜌 = 256,
𝐿 = (𝑁∕𝜌)1∕𝑑 , 𝜖 = 0.03125 and 𝜎2𝑖 = 1. Each panel shows a single ERM realization. For visualization purposes,the views in some panels are truncated since we use the same range for the eigenvalues in all panels.

47 of 92



Appendix 1—figure 6. Impact of heterogeneous activity levels on the scale invariance. A. The CI as afunction of the heterogeneity of neural activity levels E(𝜎4𝑖 ). We generate ERM where each neuron’s activity
variance 𝜎2𝑖 is i.i.d. sampled from a log-normal distribution where the logarithm of the variable follows anormal distribution with zero mean and a sequence of standard deviation (0, 0.05, 0.1,… , 0.5) in the naturallogarithm of the values 𝜎2𝑖 . We also normalize E(𝜎2𝑖 ) = 1 (Methods). The solid blue line is the average across100 ERM simulations, and the shaded area represents the SD. The red line results from the Gaussianvariational method with simulation value integration limit 𝑞𝑠𝑠 . The green line is the result of the Gaussianvariational method with high-density value integration limit 𝑞ℎ𝑠 (Methods). 𝜌0 = 128. B. Same as A, but with a
smaller 𝜌0 = 10.24. Other parameters: 𝜇 = 0.5, 𝑑 = 2, 𝑁 = 1024, 𝐿 = (𝑁∕𝜌)1∕𝑑 , 𝜖 = 0.03125. C. The collapse index(CI) of the correlation matrix (filled symbols) is larger than that of the covariance matrix (opened symbols)across different datasets excluding those shown in Figure 4. We use 7,200 time frame data across all thedatasets. l2 to l3: light-sheet zebrafish data (2 Hz per volume); n2 to n3: Neuropixels mouse data,downsampled to 10 Hz per volume, p2 to p3: two-photon mouse data, (3 Hz per volume).
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Appendix 1—figure 7. Modifications of 𝑓 (𝑥⃗) near 𝑥 = 0. The upper row illustrates the slow-decaying kernelfunction 𝑓 (𝑥⃗) (blue solid line) and its power-law asymptote (red dashed line) along a 1D slice at various 𝑓 (𝑥⃗).The lower row is similar to A, but on the log-log scale. The formulas for different 𝑓 (𝑥⃗)’s are listed in table 3 inMethods.
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Appendix 1—figure 8. Comparisons of large eigenvalues across different smoothing interval sizes, 𝜖.Rank plot (upper row) and pdf (lower row) of the covariance eigenspectrum for ERMs with different 𝑓 (𝑥⃗). A.
𝜖 = 0.06. B. 𝜖 = 0.12. C. 𝜖 = 0.3. D. 𝜖 = 0.6. Other ERM simulation parameters: 𝑁 = 4096, 𝜌 = 100, 𝜇 = 0.5, 𝑑 = 2,
𝐿 = 6.4, 𝜎2𝑖 = 1. The formulas for different 𝑓 (𝑥⃗)’s are listed in table 3 in Methods.
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Appendix 1—figure 9. Factors that do not affect the scale invariance. A. Rank plot of the covarianceeigenspectrum for ERMs with different 𝑓 (𝑥⃗) (see table 3). Diagrams show different slow-decaying kernelfunctions 𝑓 (𝑥⃗) along a 1D slice. B. Same as A but for different coordinate distributions in the functional space(see text). The diagrams on the right illustrate uniform and clustered coordinate distributions. C. Same as Abut for different geometries of the functional space (see text). Diagrams illustrate spherical andhemispherical surfaces. D. CI of the different ERMs considered in A-C. The range on the y-axis is identical toFigure 4C. On the x-axis, 1: uniform distribution, 2: normal distribution, 3: log-normal distribution, 4: uniformtwo nearby clusters, 5: uniform two faraway clusters, 6: uniform 3-cluster, 7: spherical surface in ℝ3, 8:hemispherical surface in ℝ3. All ERM models in B, C are adjusted to have a similar distribution of pairwisecorrelations (Methods).
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Appendix 1—figure 10. Fitting ERM to zebrafish data from our experiments (part 1). Comparison ofsampled covariance eigenspectra in fish data and fitted ERM models. The columns correspond to sixlight-field zebrafish data: fish 1 to fish 6. Number of time frames: fish 1 - 7495, fish 2 - 9774, fish 3 - 13904, fish4 - 7318, fish 5 - 7200 and fish 6 - 9388. A-F. sampled covariance eigenspectra for different fish data. G-L.Same as A-F but for ERM models with fitted parameters (𝜇∕𝑑, 𝐿), functional coordinates inferred using MDS,and the experimental 𝜎𝑖. M-R. Same as A-F but for ERM models with fitted parameters (𝜇∕𝑑, 𝐿), uniformdistributed functional coordinates, and a log-normal distribution of 𝜎2.
𝜇∕𝑑 = [0.456, 0.258, 0.205, 0.262, 0.302, 0.308] in fish 1-6.
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Appendix 1—figure 11. Fitting ERM to all six zebrafish data from our experiments (part 2). Comparisonof the covariance matrix between fish data and our fitted model. The columns correspond to six light-fieldzebrafish data: fish 1 to fish 6. A-F. The covariance matrix of different fish data. G-L. The covariance matrix ofERM models with fitted parameters (𝜇, 𝐿) and functional coordinates inferred using MDS and theexperimental 𝜎𝑖.
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Appendix 1—figure 12. Fitting ERM to all six zebrafish data from our experiments (part 3). Columnscorrespond to five light-field zebrafish data: fish 1 to fish 6. A-F: Comparison of the power-law kernel function
𝑓 (𝑥⃗) in the model (blue line) and the correlation-distance relationship in the data (red line). The distance iscalculated from the inferred coordinates using MDS. The shaded area represents the SD. G-L: Same as A-Dbut on the log-log scale.
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Appendix 1—figure 13. Fitting ERM to all six zebrafish data from our experiments (part 4). Columnscorrespond to 6 light-field zebrafish data: fish 1 to fish 6. A-F: CCA correlation between the first CCA variableswith different embedding dimensions in the functional space. Blue line indicates the CCA correlation ofexample fish data, green line shows the CCA correlation of example fish data with shuffled functionalcoordinates, and error bars represent the SD.
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Appendix 1—figure 14. Relationship between the functional space and anatomical space for each
zebrafish dataset from our experiments. Columns correspond to five light-field zebrafish data: fish 1 tofish 5 (with fish 6 has been shown in Figure 5). A-E. Distribution of neurons in the functional space, where
each neuron is color-coded by the projection of its coordinate along the canonical axis 𝑏⃗1 in anatomical space(see text in Result hyperref[sec:result fitting data]Result). Arrow: the first CCA direction 𝑎1 in functional space.
F-J. Distribution of neurons in the anatomical space with the forebrain neuron located on the left side and thehindbrain neuron on the right side. Each neuron is color-coded by the projection of its coordinate along the
canonical axis 𝑎1 in functional space (see text in Result). Arrow: the first CCA direction 𝑏⃗1 in anatomical space.
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Appendix 1—figure 15. The effects of hunting behavior on scale invariance and functional space
organization. A,B. sampled covariance eigenspectra of the data from fish 1 calculated from control (A) andhunting removed (B) data . Ctrl: We randomly remove the same number of non-hunting frames. This processis repeated 10 times, and the mean±SD of the CI is shown in the plot. Hunting removed: The time framescorresponding to the eye-converged intervals (putative hunting state) are removed when calculating thecovariance (Methods). The CI for the hunting-removed data appears to be statistically smaller than in thecontrol case (p-value= 1.5 × 10−9). C. Functional space organization of control data. The neurons are clusteredusing the Gaussian Mixture Models (GMMs) and their cluster memberships are shown by the color. The colorbar represents the proportion of neurons that belong to each cluster. D. Similar to C but the functionalcoordinates are inferred from the hunting-removed data. The color code of each neuron is the same as thatof the control data (C), which allows for a comparison of the changes to the clusters under thehunting-removed condition. See also the Movie. S1. E. Fold change in size / area (Methods) for each cluster(top; the gray dashed line represents a fold change of 1, that is, no change in size) and the anatomicaldistribution of the most dispersed cluster (bottom).
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Appendix 1—figure 16. Removing the time segment of hunting behavior does not obliterate the
scale-invariant eigenspectra. Rows correspond to 4 light-field zebrafish data: fish 2 to fish 5 (results for fish1 have been shown in Appendix 1—figure 15). A,C,E,G. Ctrl: we randomly remove the same number of timeframes that are not the putative hunting frames. We repeat this process 10 times to generate 10 controlcovariance matrices and the CI is represented by mean±SD. B,D,F,H. Hunting removed: data obtained byremoving hunting frames from the full data (Methods). The CI for the hunting removed data appears to besignificantly smaller than that of the control case (one-sample t-test 𝑝 = 2.2 × 10−10 in fish 2, 𝑝 = 4.6 × 10−9 infish 3, 𝑝 = 1.7 × 10−9 in fish 4, and 𝑝 = 3.4 × 10−17 in fish 5).
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Appendix 1—figure 17. Hunting behavior reorganizes neurons in the functional space (continued on
next page). Rows correspond to 5 light-field recordings of zebrafish engaged in hunting behavior: fish 1 tofish 5. A,D,G,J,M. (top) Functional space organization of the control data inferred by fitting the ERM and MDS( Result). Neurons are clustered using the Gaussian Mixture Models (GMMs) and their cluster membershipsare shown by the color. The colorbar represents the proportion of neurons belonging to each cluster.
A,D,G,J,M. (bottom) The coordinate distribution of the cluster in control data which is most dispersed (i.e.,largest fold change in size, see below) after hunting-removal. The transparency of the dots (colorbar) isproportional to the probability of the neurons belonging to this cluster (Methods). The cyan ellipse serves as avisual aid for the cluster size: it encloses 95% of the neurons belonging to that cluster (Methods). B,E,H,K,N.
(top) Similar to A,D,G,J,M. (top) but the functional coordinates are inferred from the hunting-removed data.The color code of each neuron is the same as that in the control data, which allows for a comparison of thechanges to the clusters under the hunting-removed condition. B,E,H,K,N. (bottom) Similar to A,D,G,J,M.
(bottom) but the functional coordinates are inferred from the hunting-removed data. The transparency ofeach neuron is the same as in A,D,G,J,M. (bottom), and it represents the probability 𝑝𝑖𝑘 (Methods) of neuronsbelonging to the most dispersed cluster 𝑘 in the control data. Likewise, the cyan ellipse encloses 95% of theneurons belonging to that cluster (Methods). C,F,I,L,O. Top, size/area fold change (Methods) for each cluster(the gray dashed line represents a fold change of 1, i.e., no change in size); bottom, the anatomicaldistribution of the neurons in the most dispersed cluster.
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Appendix 1—figure 17. Hunting behavior reorganizes neurons in the functional space (continued).
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Appendix 1—figure 18. Negative covariances do not affect the eigenspectrum of the zebrafish data.Red: eigenspectrum of the original data covariance matrix. Blue: eigenspectrum of the covariance matrix withnegative entries replaced by zeros. In this figure, all neurons recorded in each fish were utilized without anysampling.
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Appendix 1—figure 19. Eigenspectra of RG-inspired clustering, direct functional region sampling
(FSap), and random sampling (RSap) in ERM. A,D. Renormalization-Group (RG) clustered eigenspectra ofERM. The size of the cluster is denoted by 𝑁 , which is the number of neurons in each cluster. We adopt theRG approachMeshulam et al. (2019, 2018), but with a specific modification (Methods). B,E. Direct spatialsampling in the functional space (FSap) and the corresponding ERM eigenspectra. We began our analysis witha set of 𝑁0 neurons distributed in the functional space. Initially, we chose 𝑁 = 𝑁0∕2 neurons that werelocated exclusively on one side of the x-axis of this space. We then proceeded to select 𝑁 = 𝑁0∕4 neuronsfrom 4 quadrants. This sampling process was repeated iteratively, generating successively smaller subsets ofneurons. C,F. Random sampled (RSap) eigenspectra of ERM. ERM parameters: A-C Exponential function
𝑓 (𝑥⃗) = 𝑒−‖𝑥⃗‖∕𝑏 where 𝑏 = 1, 𝜌 = 10.24 and dimension 𝑑 = 2. D-F Approximate power law eq. (11) with 𝜇 = 0.5,
𝜌 = 10.24 and dimension 𝑑 = 2. Other parameters are the same as Figure 3. The standard error of the mean(SEM) across the clusters is represented by the shaded area of each line.
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Appendix 1—figure 20. Dimensionality (𝐷PR) across sampling methods in fish data. A-F Result from fish1 to fish 6: mean RSap 𝐷PR (circles), mean (squares) and individual ASap 𝐷PR, and FSap’s most correlatedcluster 𝐷PR (triangles). Dashed and solid lines indicate RSap and uniform FSap theoretical predictions,respectively.
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Appendix 1—figure 21. Dimensionality (𝐷PR) across sampling methods in ERM. PR dimensionality resultof ERM model, coordinate in funcitonal and anatomical space are multivariate Gaussian distribution, the CCAcorrelation between funcitonal and anatomical space are 𝑅𝐶𝐶𝐴 = 0.4, 0.6, 0.8 in A-C. Mean RSap 𝐷PR (circles),mean (squares) and individual ASap 𝐷PR, and FSap’s most correlated cluster 𝐷PR (triangles). Dashed and solidlines indicate RSap and uniform FSap theoretical predictions, respectively. ERM parameter: 𝜇 = 0.6, 𝑑 = 2,functional coordinates follow a multivariate normal distribution with variance 𝜎2𝑥1 = 2, 𝜎2𝑥2 = 1, anatomical
coordinates follow a multivariate normal distribution with variance 𝜎2𝑦1 = 1, 𝜎2𝑦2 = 1, 𝜎2𝑦3 = 1.
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Appendix 1—figure 22. Example of Renormalization Group (RG) approach for a set of eight neurons.The figure is adapted fromMeshulam et al. (2019). The diagram illustrates the iterative clustering process foreight neurons. In each iteration, neurons are paired based on maximum correlation, with their activitiescombined through summation and normalized to maintain unit mean for nonzero values. Each neuron canonly be paired once per iteration, ensuring all neurons are grouped by the iteration’s end.
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Appendix 1—figure 23. Morrell et al.’s latent variable model. A-D: Functional sampled (FSap)eigenspectra of the Morrell et al. model. E-H: Random sampled (RSap) eigenspectra of the same model.Briefly, in Morrell et al.’s latent variable modelMorrell et al. (2021, 2024), neural activity is driven by 𝑁𝑓 latentfields and a place field. The latent fields are modeled as Ornstein-Uhlenbeck processes with a time constant 𝜏.The parameters 𝜖 and 𝜂 control the mean and variance of individual neurons’ firing rates, respectively. Thefollowing are the parameter values used. A,E: Using the same parameters as inMorrell et al. (2021): 𝑁𝑓 = 10,
𝜖 = −2.67, 𝜂 = 6, 𝜏 = 0.1. Half of the cells are also coupled to the place field. B,C,D,F,G,H: Using parametersfromMorrell et al. (2024): 𝑁𝑓 = 5, 𝜖 = −3, 𝜂 = 4. There is no place field. The time constant 𝜏 = 0.1, 1, 10 for B,F,
C,G, and D,H, respectively.
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Appendix 1—figure 24. Scale-invariant properties persist across different temporal sampling rates in
neural recordings. Analysis of multi-area Neuropixels recordings Stringer et al. (2019b) from 1024 neurons,downsampled to different rates resulting in 7200 time frames per condition (6 Hz, 12 Hz, 18 Hz, and 24 Hz;columns 1-4 respectively). A-D. Distribution of pairwise covariances after normalization to unit variance(E(𝜎2𝑖 ) = 1, see Methods). E-H. Eigenvalue spectra of the covariance matrices, showing similar power-lawscaling across sampling rates. I-L. Probability density functions (PDFs) of the eigenvalues, demonstrating thatthe characteristic shape of the distribution is preserved across different temporal resolutions.

1479
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Appendix 21480

In this appendix, we elaborate upon the sketch introduced in theMethods, and present a full deriva-1481

tion of the covariance eigenspectrum of our ERMmodel, This section is organized as follows. First,1482

we will briefly introduce the relationship between the eigenvalue probability density distribution1483

and the resolvent. Second, we will turn the problem of calculating the resolvent to a calculation1484

of the partition function using a field-theoretic representation and proceed to manipulate the par-1485

tition function using the replica method. Third, we will introduce two approximate methods for1486

calculating the partition function, leading to the high-density theory and the Gaussian variational1487

method. We will discuss the implications and predictions of each method. Finally, we will discuss1488

the relationship between the two methods and identify the parameter regime where the high-1489

density theory agrees with the numerical simulation.1490

Notation Description
𝑔(𝑧) resolvent, eq. (S2)
⟨...⟩ the average across realizations of 𝐶 (i.e., random 𝑥⃗𝑖 ’s and 𝜎2

𝑖 ’s), eq. (S1)
Ξ(𝑧) Canonical partition function, Gaussian integral representation of the determinant [det(𝑧 − 𝐶)]−1∕2, eq. (S5)
𝜙 intermediate variable for Gaussian integral representation Ξ(𝑧), eq. (S5)
𝜓 density field of 𝜙
𝜓̂ respective Lagrange multiplier fields of 𝜓
𝑆1 the action in Ξ(𝑧) (by analogy with the path integral formulation of quantum mechanics)
𝑆ℎ the action in the high-density approximation of Ξ(𝑧)
𝑆𝑣 the action in the variational approximation of Ξ(𝑧)
𝐴 term in 𝑆1

𝑓−1 the operator inverse of 𝑓 , eq. (S23)
𝐺 quadratic kernel in the Gaussian integral approximation of Ξ(𝑧)
𝐺−1 the operator inverse of 𝐺, same definition as 𝑓−1

𝐺̃ the Fourier transform of 𝐺
Appendix 2—table 1. Table of notations.

Resolvent1491

The eigenvalues 𝜆𝑛 of a Hermitian matrix 𝐶 are real. Their probability density function or eigenden-1492

sity is formally given by1493

𝑝(𝜆) = 1
𝑁

⟨

𝑁
∑

𝑛=1
𝛿(𝜆 − 𝜆𝑛)

⟩

, (S1)
where ⟨...⟩ represents an average across different realizations of 𝐶 . The eigendensity is connected1494

with the resolventMézard et al. (1999); Goetschy and Skipetrov (2013)1495

𝑔(𝑧) = 1
𝑁

⟨

Tr 1
𝑧 − 𝐶

⟩

= 1
𝑁

⟨

𝑁
∑

𝑛=1

1
𝑧 − 𝜆𝑛

⟩

, (S2)
we therefore compute the eigendensity using the standard inverse formula of Stieltjes tranform:1496

𝑝(𝜆) = − 1
𝜋

lim
𝜂→0+

𝐈𝐦 𝑔(𝜆 + 𝑖𝜂) (S3)
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Field representation1497

In this section, we discuss a field-theoretical representation of the resolvent 𝑔(𝑧). First, we rewrite1498

eq. (S2) as1499

𝑔(𝑧) = − 2
𝑁
𝜕𝑧

⟨

ln
[

(det(𝑧 − 𝐶))−1∕2
]⟩ (S4)

The determinant (det(𝑧 − 𝐶))−1∕2 can be represented as a Gaussian integral1500

Ξ(𝑧) = (det(𝑧 − 𝐶))−1∕2 = 𝑖−𝑁∕2
∫

+∞

−∞

d𝜙1
√

2𝜋
...
d𝜙𝑁
√

2𝜋
exp

[

− 𝑖
2
Φ𝑇 (𝑧 − 𝐶)Φ

]

, (S5)
where Φ = [𝜙1,… , 𝜙𝑁 ]𝑇 , and 𝑖 ≡ √

−1.1501

ln Ξ(𝑧) = ln∫

+∞

−∞

d𝜙1
√

2𝜋
...
d𝜙𝑁
√

2𝜋
exp

[

− 𝑖
2
Φ𝑇 (𝑧 − 𝐶)Φ

]

− 𝑖𝜋𝑁
4 (S6)

We thus establish a relationship between the resolvent and Ξ1502

𝑔(𝑧) = − 2
𝑁
𝜕𝑧 ⟨ln Ξ(𝑧)⟩ (S7)

Note that the constant term in eq. (S6) can be killed by 𝜕𝑧 and we will ignore it in the sequel. eq. (S7)1503

is the central formula in this note. Ξ(𝑧) is also called the partition function in statistical physics. We1504

endeavor to find a way to compute the average of ln Ξ(𝑧).1505

1506

Recall that in our ERM model (Result eq. (2) and Figure 3A), the covariance between neuron1507

𝑖 and neuron 𝑗 is determined by the distance kernel function and their neural activity variances:1508

𝐶𝑖𝑗 = 𝑓 (𝑥⃗𝑖 − 𝑥⃗𝑗)𝜎𝑖𝜎𝑗 , (S8)
where 𝑥⃗𝑖 are sampled from a uniform coordinate distribution 𝑝(𝑥⃗𝑖) = 1∕𝑉 ; 𝜎𝑖 are i.i.d. chosen from1509

a probability density distribution 𝑝(𝜎) and are independent of the neuron coordinates 𝑥⃗𝑖. The ⟨...⟩1510

in eq. (S7) is therefore an average over all possible 𝑥⃗𝑖 and 𝜎𝑖.1511

1512

In order to compute ⟨ln Ξ(𝑧)⟩, we apply the replica method based on a smart use of the identity1513

ln 𝑥 = lim
𝑛→0

𝑥𝑛 − 1
𝑛

eq. (S7) now becomes1514

𝑔(𝑧) = − 2
𝑁
𝜕𝑧

[

lim
𝑛→0

1
𝑛
⟨Ξ𝑛(𝑧) − 1⟩

]

= − 2
𝑁
𝜕𝑧

[

lim
𝑛→0

1
𝑛
ln ⟨Ξ𝑛(𝑧)⟩

] (S9)
The idea is to compute the right-hand side for finite and integer 𝑛 and then perform the analytic1515

continuation to 𝑛 → 0.1516

1517

Now we seek to determine the value of ⟨Ξ𝑛(𝑧)⟩. It contains 𝑛 copies (replicas) of the original1518

system1519

⟨Ξ𝑛(𝑧)⟩ = ( 1
2𝜋

)
𝑁𝑛
2
∫

+∞

−∞
(d𝜙1

1...d𝜙
𝑛
1)...(d𝜙

1
𝑁 ...d𝜙

𝑛
𝑁 )

⟨

exp

[

− 𝑖
2

𝑛
∑

𝛼=1
Φ𝛼𝑇 (𝑧 − 𝐶)Φ𝛼

]⟩

. (S10)
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Writing it down explicitly, we have1520

⟨Ξ𝑛(𝑧)⟩ = ( 1
2𝜋

)
𝑁𝑛
2
∫

+∞

−∞
(d𝜙1

1...d𝜙
𝑛
1)...(d𝜙

1
𝑁 ...d𝜙

𝑛
𝑁 )∫

𝐿

−𝐿

d𝑑 𝑥⃗1
𝑉

...
d𝑑 𝑥⃗𝑁
𝑉 ∫ 𝑝(𝜎1)d𝜎1...𝑝(𝜎𝑁 )d𝜎𝑁

exp

[

−𝑧𝑖
2

𝑛
∑

𝛼=1

𝑁
∑

𝑗=1
(𝜙𝛼𝑗 )

2 + 𝑖
2

𝑛
∑

𝛼=1

𝑁
∑

𝑗,𝑘=1
𝜙𝛼𝑗𝜙

𝛼
𝑘𝑓 (𝑥⃗𝑗 − 𝑥⃗𝑘)𝜎𝑗𝜎𝑘

]

(S11)

In order to proceed further, we introduce the following auxiliary fields :1521

𝜓𝛼(𝑥⃗) =
𝑁
∑

𝑗=1
𝜙𝛼𝑗 𝛿(𝑥⃗ − 𝑥⃗𝑗) (S12)

eq. (S12) can be represented as a following functional integral1522

1 = ∫

+∞

−∞

𝑛
∏

𝛼=1
𝐷[𝜓𝛼]𝛿𝐹 [𝜓𝛼(𝑥⃗) −

𝑁
∑

𝑗=1
𝜙𝛼𝑗 𝛿(𝑥⃗ − 𝑥⃗𝑗)] (S13)

𝛿𝐹 [𝜓] = ∫

+∞

−∞
𝐷[𝜓̂] exp[𝑖∫

+∞

−∞
d𝑑 𝑥⃗𝜓(𝑥⃗)𝜓̂(𝑥⃗)] (S14)

or we can combine eq. (S13) and eq. (S14) as1523

1 = ∫

+∞

−∞ ∫

+∞

−∞

𝑛
∏

𝛼=1
𝐷[𝜓̂𝛼]𝐷[𝜓𝛼] exp

[

𝑖∫

+∞

−∞
d𝑑 𝑥⃗[𝜓𝛼(𝑥⃗) −

𝑁
∑

𝑗=1
𝜙𝛼𝑗 𝛿(𝑥⃗ − 𝑥⃗𝑗)]𝜓̂

𝛼(𝑥⃗)

]

(S15)

Using eq. (S12), we can write the term 1
2

𝑁
∑

𝑗,𝑘=1
𝜙𝛼𝑗𝜙

𝛼
𝑘𝑓 (𝑥⃗𝑗 − 𝑥⃗𝑘) in eq. (S11) as1524

1
2

𝑁
∑

𝑗,𝑘=1
𝜙𝛼𝑗𝜙

𝛼
𝑘𝑓 (𝑥⃗𝑗 − 𝑥⃗𝑘) =

1
2 ∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓 (𝑥⃗ − 𝑥⃗′)𝜓𝛼(𝑥⃗)𝜓𝛼(𝑥⃗′) (S16)

We insert the relation eq. (S15) and eq. (S16) into eq. (S11),1525
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⟨Ξ𝑛(𝑧)⟩ =( 1
2𝜋

)
𝑁𝑛
2
∫

+∞

−∞
(d𝜙1

1...d𝜙
𝑛
1)...(d𝜙

1
𝑁 ...d𝜙

𝑛
𝑁 )∫

𝐿

−𝐿

d𝑑 𝑥⃗1
𝑉

...
d𝑑 𝑥⃗𝑁
𝑉 ∫ 𝑝(𝜎1)d𝜎1...𝑝(𝜎𝑁 )d𝜎𝑁

exp

[

−𝑧𝑖
2

𝑛
∑

𝛼=1

𝑁
∑

𝑗=1
(𝜙𝛼𝑗 )

2 + 𝑖
2

𝑛
∑

𝛼=1

𝑁
∑

𝑗,𝑘=1
𝜙𝛼𝑗𝜙

𝛼
𝑘𝑓 (𝑥⃗𝑗 − 𝑥⃗𝑘)𝜎𝑗𝜎𝑘

]

∫

+∞

−∞ ∫

+∞

−∞

𝑛
∏

𝛼=1
𝐷[𝜓𝛼]𝐷[𝜓̂𝛼] exp

[

𝑖∫

+∞

−∞
d𝑑 𝑥⃗(𝜓𝛼(𝑥⃗) −

𝑁
∑

𝑗=1
𝜙𝛼𝑗 𝛿(𝑥⃗ − 𝑥⃗𝑗)𝜎𝑗)𝜓̂

𝛼(𝑥⃗)

]

=( 1
2𝜋

)
𝑁𝑛
2
∫

+∞

−∞

𝑛
∏

𝛼=1
𝐷[𝜓𝛼]𝐷[𝜓̂𝛼]∫

+∞

−∞
(d𝜙1

1...d𝜙
𝑛
1)...(d𝜙

1
𝑁 ...d𝜙

𝑛
𝑁 )

∫

𝐿

−𝐿

d𝑑 𝑥⃗1
𝑉

...
d𝑑 𝑥⃗𝑁
𝑉 ∫ 𝑝(𝜎1)d𝜎1...𝑝(𝜎𝑁 )d𝜎𝑁

exp

[

−𝑧𝑖
2

𝑛
∑

𝛼=1

𝑁
∑

𝑗=1
(𝜙𝛼𝑗 )

2 + 𝑖
2

𝑛
∑

𝛼=1

𝑁
∑

𝑗,𝑘=1
𝜙𝛼𝑗𝜙

𝛼
𝑘𝑓 (𝑥⃗𝑗 − 𝑥⃗𝑘)𝜎𝑗𝜎𝑘

]

exp

[

𝑖
𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑑 𝑥⃗(𝜓𝛼(𝑥⃗) −

𝑁
∑

𝑗=1
𝜙𝛼𝑗 𝛿(𝑥⃗ − 𝑥⃗𝑗)𝜎𝑗)𝜓̂

𝛼(𝑥⃗)

]

=( 1
2𝜋

)
𝑁𝑛
2
∫

+∞

−∞

𝑛
∏

𝛼=1
𝐷[𝜓𝛼]𝐷[𝜓̂𝛼] exp

[

𝑖
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓 (𝑥⃗ − 𝑥⃗′)𝜓𝛼(𝑥⃗)𝜓𝛼(𝑥⃗′)

]

∫

+∞

−∞
(d𝜙1

1...d𝜙
𝑛
1)...(d𝜙

1
𝑁 ...d𝜙

𝑛
𝑁 )∫

𝐿

−𝐿

d𝑑 𝑥⃗1
𝑉

...
d𝑑 𝑥⃗𝑁
𝑉 ∫ 𝑝(𝜎1)d𝜎1...𝑝(𝜎𝑁 )d𝜎𝑁

exp

[

−𝑧𝑖
2

𝑛
∑

𝛼=1

𝑁
∑

𝑗=1
(𝜙𝛼𝑗 )

2 + 𝑖
𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑑 𝑥⃗(𝜓𝛼(𝑥⃗) −

𝑁
∑

𝑗=1
𝜙𝛼𝑗 𝛿(𝑥⃗ − 𝑥⃗𝑗)𝜎𝑗)𝜓̂

𝛼(𝑥⃗)

]

=( 1
2𝜋

)
𝑁𝑛
2
∫

+∞

−∞

𝑛
∏

𝛼=1
𝐷[𝜓𝛼]𝐷[𝜓̂𝛼] exp

[

𝑖
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓 (𝑥⃗ − 𝑥⃗′)𝜓𝛼(𝑥⃗)𝜓𝛼(𝑥⃗′)

]

exp

[

𝑖
𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑑 𝑥⃗𝜓𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗)

]

∫

+∞

−∞
(d𝜙1

1...d𝜙
𝑛
1)...(d𝜙

1
𝑁 ...d𝜙

𝑛
𝑁 )∫

𝐿

−𝐿

d𝑑 𝑥⃗1
𝑉

...
d𝑑 𝑥⃗𝑁
𝑉 ∫ 𝑝(𝜎1)d𝜎1...𝑝(𝜎𝑁 )d𝜎𝑁

exp

[

−𝑧𝑖
2

𝑛
∑

𝛼=1

𝑁
∑

𝑗=1
(𝜙𝛼𝑗 )

2 − 𝑖
𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑑 𝑥⃗

𝑁
∑

𝑗=1
𝜙𝛼𝑗 𝛿(𝑥⃗ − 𝑥⃗𝑗)𝜎𝑗𝜓̂

𝛼(𝑥⃗)

]

(S17)

Integrating the last term in eq. (S17)1526

∫

+∞

−∞
d𝜙1

𝑖 ...d𝜙
𝑛
𝑖 ∫

𝐿

−𝐿

d𝑑𝑟𝑖
𝑉 ∫ d𝜎𝑖𝑝(𝜎𝑖) exp

[

−𝑧𝑖
2

𝑛
∑

𝛼=1
(𝜙𝛼𝑖 )

2 − 𝑖
𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑑𝑟𝜙𝛼𝑖 𝛿(𝑟 − 𝑟𝑖)𝜎𝑖𝜓̂

𝛼(𝑟)

]

= ∫

𝐿

−𝐿

d𝑑𝑟𝑖
𝑉 ∫

+∞

−∞
d𝜙1

𝑖 ...d𝜙
𝑛
𝑖 ∫ d𝜎𝑖𝑝(𝜎𝑖) exp

[

−𝑧𝑖
2

𝑛
∑

𝛼=1
(𝜙𝛼𝑖 )

2 − 𝑖
𝑛
∑

𝛼=1
𝜙𝛼𝑖 𝜎𝑖𝜓̂

𝛼(𝑟𝑖)

]

= (2𝜋
𝑧𝑖

)
𝑛
2
∫

𝐿

−𝐿

d𝑑𝑟𝑖
𝑉 ∫ d𝜎𝑖𝑝(𝜎𝑖) exp

[

𝑖
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑟𝑖)2𝜎2

𝑖

]

= (2𝜋
𝑧𝑖

)
𝑛
2
∫

𝐿

−𝐿

d𝑑𝑟
𝑉 ∫ d𝜎𝑝(𝜎) exp

[

𝑖
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑟)2𝜎2

]

(S18)

so that ⟨Ξ𝑛(𝑧)⟩ from eq. (S11) can be written as1527

⟨Ξ𝑛(𝑧)⟩ = ∫

+∞

−∞

𝑛
∏

𝛼=1
𝐷[𝜓𝛼]𝐷[𝜓̂𝛼]𝐴𝑁𝑒𝑆0 (S19)
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where 𝐴 = ∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

(𝑧𝑖)−
𝑛
2
∫ d𝜎𝑝(𝜎) exp

[

𝑖
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2𝜎2

]

(S20)

and 𝑆0 =
𝑖
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓 (𝑥⃗ − 𝑥⃗′)𝜓𝛼(𝑥⃗)𝜓𝛼(𝑥⃗′) + 𝑖

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑑 𝑥⃗𝜓𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗) (S21)

Integrating out the 𝜓𝛼 in ⟨Ξ𝑛(𝑧)⟩ eqs. (S19) and (S21)1528

∫

+∞

−∞
𝐷[𝜓𝛼] exp

[

𝑖
2 ∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓 (𝑥⃗ − 𝑥⃗′)𝜓𝛼(𝑥⃗)𝜓𝛼(𝑥⃗′) + 𝑖∫

+∞

−∞
d𝑑 𝑥⃗𝜓𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗)

]

= (2𝜋𝑖)𝑁∕2(det 𝑓 )−1∕2 exp
[

− 𝑖
2 ∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′)

]

(S22)

Here 𝑓−1 is the inverse kernel satisfying:1529

∫

+∞

−∞
d𝑥⃗′′𝑓 (𝑥⃗ − 𝑥⃗′′)𝑓−1(𝑥⃗′′ − 𝑥⃗′) = 𝛿(𝑥⃗ − 𝑥⃗′) (S23)

so that ⟨Ξ𝑛(𝑧)⟩ can be written as1530

⟨Ξ𝑛(𝑧)⟩ = (2𝜋𝑖)
𝑁𝑛
2 (det 𝑓 )−𝑛∕2 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆1

(S24)

𝑆1 = 𝑁 ln𝐴 − 𝑖
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′) (S25)

The constant term (2𝜋𝑖)
𝑁𝑛
2 of ⟨Ξ𝑛(𝑧)⟩ can be ignored because we should compute 𝜕𝑧 ⟨ln Ξ(𝑧)⟩ eq. (S7)1531

in the end.1532

1533

To ensure the mathematical rigor in , eq. (S42), we next apply the Wick rotation 𝜓𝛼(𝑥⃗) → 𝜓𝛼(𝑥⃗)𝑒−𝑖
𝜋
41534

(Appendix 1—figure 17).1535

⟨Ξ𝑛(𝑧)⟩ = (det 𝑓 )−𝑛∕2 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆1 (S26)

𝑆1 = 𝑁 ln𝐴 − 1
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′) (S27)

𝐴 = ∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎) exp

[

1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2𝜎2

]

(S28)

High-Density Expansion1536

In this section, we directly calculate the canonical partition function ⟨Ξ𝑛(𝑧)⟩ in the 𝑧 → ∞ limit by1537

approximating the term 𝑁 ln𝐴 (eq. (S27)) to a quadratic action, from which the partition function1538

(eq. (S26)) would become a Gaussian integral.1539

1540

Let us first calculate the 𝐴𝑁 in 𝑧 → ∞ limit1541
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lim
𝑧→∞

𝐴 ≈ (𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎)

[

1 + ∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2𝜎2

]

= (𝑧)−
𝑛
2

[

1 + ∫ d𝜎𝑝(𝜎)𝜎2
∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2

]

= (𝑧)−
𝑛
2

[

1 + E(𝜎2)∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2

]

(S29)

lim
𝑧→∞

𝐴𝑁 = lim
𝑧→∞

(𝑧)−
𝑁𝑛
2

[

1 +𝑁E(𝜎2)∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2

]

= lim
𝑧→∞

(𝑧)−
𝑁𝑛
2

[

1 +𝑁E(𝜎2)
𝑛
∑

𝛼=1
∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

1
2𝑧
𝜓̂𝛼(𝑥⃗)2

]

≈ (𝑧)−
𝑁𝑛
2 exp

[

E(𝜎2)∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

𝑁
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2

]

(S30)

Now let us calculate ⟨Ξ𝑛(𝑧)⟩ (eqs. (S26) to (S28)) by letting 𝐿 → ∞1542

⟨Ξ𝑛(𝑧)⟩ = (det 𝑓 )−𝑛∕2(𝑧)−
𝑁𝑛
2
∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆ℎ

(S31)

where the high-density quadratic action1543

𝑆ℎ = E(𝜎2)∫

∞

−∞

d𝑑 𝑥⃗
𝑉

𝑁
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2 − 1

2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′)

= −1
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝐺−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′)

(S32)

where 𝐺−1(𝑥⃗ − 𝑦) = 𝑓−1(𝑥⃗ − 𝑦) − 𝑁E(𝜎2)
𝑉 𝑧

𝛿(𝑥⃗ − 𝑦). Next, by integrating out the 𝜓̂ field, we find1544

⟨Ξ𝑛(𝑧)⟩ = (det 𝑓 )−𝑛∕2(𝑧)−
𝑁𝑛
2
∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆ℎ

= (𝑧𝑁 det 𝑓 det(𝐺−1))−𝑛∕2

(S33)

Using eq. (S9) that connects the partition function with the resolvent, we have1545

𝑔(𝑧) = − 2
𝑁
𝜕𝑧

[

lim
𝑛→0

1
𝑛
ln
(

(det(𝑧𝑓𝐺−1))−𝑛∕2
)

]

= 𝑉
𝑁
𝜕𝑧 ∫

+∞

−∞

d𝑑 𝑘⃗
(2𝜋)𝑑

ln

(

𝑧 −
𝑁E(𝜎2)𝑓 (𝑘⃗)

𝑉

)

= 1
𝜌 ∫

+∞

−∞

d𝑑 𝑘⃗
(2𝜋)𝑑

1
𝑧 − 𝜌E(𝜎2)𝑓 (𝑘⃗)

(S34)

where 𝑓 (𝑘⃗) is the Fourier transform of 𝑓 (𝑥⃗).1546

1547

Finally, the eigendensity 𝑝(𝜆) (eq. (S3)) is given by1548
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𝑝(𝜆) = − 1
𝜋

lim
𝜂→0+

𝐈𝐦(𝑔(𝜆 + 𝑖𝜂))

= 1
𝜌 ∫

+∞

−∞

d𝑑 𝑘⃗
(2𝜋)𝑑

𝛿(𝜆 − 𝜌E(𝜎2)𝑓 (𝑘⃗))

= 1
𝜌E(𝜎2) ∫

+∞

−∞

d𝑑 𝑘⃗
(2𝜋)𝑑

𝛿
(

𝜆
E(𝜎2)

− 𝜌𝑓 (𝑘⃗)
)

(S35)

Derivation of power-law eigenspectrum in high-density limit1549

Here we calculate the eigendensity of our model, with the kernel function 𝑓 (𝑥⃗) (table 3). The1550

eq. (S35) (set E(𝜎2) = 1 as in Result) can be written as:1551

𝑝(𝜆) =
𝑆𝑑−1
(2𝜋)𝑑

‖𝑘⃗0‖𝑑−1

𝜌2|𝑓 ′(𝑘⃗0)|
, ‖𝑘⃗0‖ = 𝑓−1(𝜆

𝜌
) (S36)

where 𝑆𝑑−1 is the surface area of 𝑑 − 1 dimensional sphere. Here we consider the approxima-1552

tion 𝑓 (𝑥⃗) ≈ 𝜖𝜇‖𝑥⃗‖−𝜇 , whose Fourier transform and its derivative are 𝑓 (𝑘⃗) = 𝑐0‖𝑘⃗‖−(𝑑−𝜇), 𝑓 ′(𝑘⃗) =1553

𝑐1‖𝑘⃗‖−(𝑑−𝜇+1) and ‖𝑘0‖ = 𝑓−1( 𝜆
𝜌
) = ( 𝜆

𝑐0𝜌
)−

1
𝑑−𝜇 . The constants are given by 𝑐0 = 2𝑑−𝜇𝜋

𝑑
2 𝜖𝜇

Γ( 𝑑−𝜇2 )

Γ( 𝜇2 )
= 𝜖𝜇𝑐2,1554

𝑐1 = −(𝑑 − 𝜇)𝑐0, 𝑐2 = 2𝑑−𝜇𝜋
𝑑
2
Γ( 𝑑−𝜇2 )

Γ( 𝜇2 )
1555

𝑝(𝜆) =
𝑆𝑑−1
(2𝜋)𝑑

‖𝑘⃗0‖𝑑−1

𝜌2|𝑓 ′(𝑘⃗0)|
=
𝑆𝑑−1
(2𝜋)𝑑

‖𝑘⃗0‖2𝑑−𝜇

𝜌2|𝑐1|

=
𝑆𝑑−1
(2𝜋)𝑑

𝑐
𝑑
𝑑−𝜇
0

𝜌2(𝑑 − 𝜇)
(𝜆
𝜌
)−

2𝑑−𝜇
𝑑−𝜇 =

𝑆𝑑−1
(2𝜋)𝑑

𝑐
𝑑
𝑑−𝜇
2

𝑑 − 𝜇
𝜆−

2𝑑−𝜇
𝑑−𝜇 (𝜌𝜖𝑑)

𝜇
𝑑−𝜇

(S37)

Derivation of eigenspectrum with exponential kernel function in high-density limit1556

Here we consider the exponential kernel function 𝑓 (𝑥⃗) = 𝑒−𝑏‖𝑥⃗‖, whose Fourier transform and its1557

derivative are 𝑓 (𝑘⃗) = 𝑐1

(𝑏2+‖𝑘⃗‖2)
𝑑+1
2
, 𝑓 ′(𝑘⃗) = − (𝑑+1)𝑘⃗𝑐1

(𝑏2+‖𝑘⃗‖2)−
𝑑+3
2
and ‖𝑘0‖ = 𝑓−1( 𝜆

𝜌
) =

√

( 𝑐1𝜌
𝜆
)

2
𝑑+1 − 𝑏2, ‖𝑘0‖2 + 𝑏2 =1558

( 𝑐1𝜌
𝜆
)

2
𝑑+1 , where 𝑐1 = 2𝑑𝜋

𝑑−1
2 𝑏Γ( 𝑑+1

2
)1559

𝑝(𝜆) =
𝑆𝑑−1
(2𝜋)𝑑

‖𝑘⃗0‖𝑑−1

𝜌2|𝑓 ′(𝑘⃗0)|
=
𝑆𝑑−1
(2𝜋)𝑑

(𝑏2 + ‖𝑘⃗0‖2)
− 𝑑+3

2
‖𝑘⃗0‖𝑑−1

𝜌2|(𝑑 + 1)𝑘⃗0𝑐1|

=
𝑆𝑑−1
(2𝜋)𝑑

( 𝑐1𝜌
𝜆
)−

𝑑+3
𝑑+1

‖𝑘⃗0‖𝑑−2

(𝑑 + 1)𝜌2|𝑐1|
=

𝑆𝑑−1
(𝑑 + 1)(2𝜋)𝑑

𝑐
2
𝑑+1
1 𝜌

−𝑑+1
𝑑+1 𝜆−

𝑑+3
𝑑+1

‖𝑘⃗0‖
𝑑−2

=
𝑆𝑑−1

(𝑑 + 1)(2𝜋)𝑑
2

2𝑑
𝑑+1 𝜋

𝑑−1
𝑑+1 Γ(𝑑 + 1

2
)

2
𝑑+1 (𝜌𝑏−𝑑)

−𝑑+1
𝑑+1 𝜆−

𝑑+3
𝑑+1 ((

2𝑑𝜋
𝑑−1
2 Γ( 𝑑+1

2
)𝜌𝑏−𝑑

𝜆
)

2
𝑑+1 − 1)

𝑑−2
2

(S38)

It is straightforward to see that this spectrum is not scale invariant. For example, when 𝑑 = 2, the1560

above expression reduces to a perfect power law spectrum 𝑝(𝜆) ∼ 𝜌
−𝑑+1
𝑑+1 𝜆−

𝑑+3
𝑑+1 , which changes with1561

scale over sampling.1562

Variational Approximation1563

To find a general approximation for the eigenspectrum that goes beyond the high-density limit, we1564

use Gaussian variational approximation in the field representation, namely by looking for the best1565

quadratic action 𝑆𝑣,1566

𝑆𝑣 = −1
2

𝑛
∑

𝛼𝛽
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝐺−1

𝛼𝛽 (𝑥⃗ − 𝑥⃗
′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛽(𝑥⃗′), (S39)

to approximate the action 𝑆1 in the partition function (eqs. (S26) to (S28)). This enables us to1567

represent the partition function by a Gaussian integral, which can be evaluated analytically. We1568
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find the best quadratic action 𝑆𝑣 by minimizing the difference between 𝑆1 and 𝑆𝑣, which is defined1569

as KL divergence between two distributions that are proportional to 𝑒𝑆1 and 𝑒𝑆𝑣 .1570

1571

1572

In this section, we will proceed by using the grand canonical ensemble formulation, namely the1573

average in eq. (S1), instead of using a fixed covariance matrix size 𝑁 , which is now carried out1574

across all different sizes. If 𝑁 follows a Poisson distribution, it is easy to show (Appendix 3) that1575

the grand canonical partition function is given by eq. (S113):1576

 =
∑

𝑁
⟨Ξ𝑛𝑁 (𝑧)⟩

𝑎𝑁

𝑁!
,

where 𝑎 = ⟨𝑁⟩. As a result, the new action 𝑆1 becomes1577

𝑆1 = 𝑁𝐴 − 1
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′).

(S40)

Here and below, 𝑁 should be viewed as the average matrix size. The resolvent 𝑔(𝑧) in eq. (S9) can1578

be similarly generalized to eq. (S114),1579

𝑔(𝑧) = lim
𝑛→0

− 2
𝑁𝑛

𝜕𝑧 ln

1580

1581

As in statistical physics, we define the free energy as1582

𝐹1 = − ln = − ln∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆1

(S41)

We shall define the variational free energy 𝐹𝑣 such that it would approximate the true free energy1583

𝐹1 by minimizing 𝐷𝐾𝐿(𝑃𝑣||𝑃1),1584

𝐹𝑣 =𝐷𝐾𝐿(𝑃𝑣||𝑃1) + 𝐹1

(S42)
where1585

𝑃1 =
𝑒𝑆1

∫ +∞
−∞ 𝐷[𝜓̂𝛼]𝑒𝑆1

(S43)

𝑃𝑣 =
𝑒𝑆𝑣

∫ +∞
−∞ 𝐷[𝜓̂𝛼]𝑒𝑆𝑣

(S44)

The KL divergence 𝐷𝐾𝐿(𝑃𝑣||𝑃1) is always nonnegative and the free energy 𝐹1 is independent of the1586

quadratic action 𝑆𝑣. Therefore, we need to minimize the variational free energy 𝐹𝑣. Let us now1587

examine the variational free energy 𝐹𝑣1588
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𝐹𝑣 =𝐷𝐾𝐿(𝑃𝑣||𝑃1) + 𝐹1

= 1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣 ln

𝑃𝑣
𝑃1

− ln

= 1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣 (𝑆𝑣 − 𝑆1 − ln∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣 + ln∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆1 ) − ln

= 1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣 (𝑆𝑣 − 𝑆1) − ln𝑍𝑣

(S45)

Here 𝑍𝑣 is the normalization factor1589

𝑍𝑣 = ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣 (S46)

Since we want to minimize 𝐹𝑣, the constant term1590

1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑆𝑣 = const

(S47)

can be ignored, and eq. (S45) is reduced to1591

𝐹𝑣 = − 1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑆1 − ln𝑍𝑣 (S48)

To simplify the formula, let us introduce 𝑆21592

𝑆2 = −1
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′)

(S49)

and rewrite eq. (S48) as1593

𝐹𝑣 = − 1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑆2 −

1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑁𝐴 − ln𝑍𝑣 (S50)

Next, we will compute each term in the variational free energy 𝐹𝑣1594

First, we calculate the third term ln𝑍𝑣 in eq. (S50) by eqs. (S39) and (S46)1595

ln𝑍𝑣 = ln

(

∏

𝛼,𝛽
(2𝜋)𝑁∕2(det(𝐺−1

𝛼𝛽 ))
− 1

2

)

=
∑

𝛼,𝛽

1
2
ln det(𝐺𝛼𝛽) +

𝑛2𝑁
2

ln(2𝜋)

(S51)

Second, we calculate the first term 1
𝑍𝑣

∫ +∞
−∞ 𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑆2 in eq. (S50)1596
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1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑆2 =

1
𝑍𝑣

lim
ℎ→0

𝜕
𝜕ℎ ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣+ℎ𝑆2

= 1
𝑍𝑣

lim
ℎ→0

𝜕
𝜕ℎ

∏

𝛼=𝛽

[

det(𝐺−1
𝛼𝛽 + ℎ𝑓

−1)
]− 1

2 ∏

𝛼≠𝛽

[

det(𝐺−1
𝛼𝛽 )

]− 1
2

= lim
ℎ→0

𝜕
𝜕ℎ

∏

𝛼

[

det(𝐼 + ℎ𝑓−1𝐺𝛼𝛼)
]− 1

2

=
𝑛
∑

𝛼

𝜕
𝜕ℎ

lim
ℎ→0

(1 − ℎ
2
Tr(𝑓−1𝐺𝛼𝛼))

= −
𝑛
∑

𝛼

1
2
Tr(𝑓−1𝐺𝛼𝛼)

(S52)

Third, we calculate the second term 1
𝑍𝑣

∫ +∞
−∞ 𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑁𝐴 in eq. (S50), recall the term 𝐴 (eq. (S28))1597

𝐴 = ∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎) exp

[

1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2𝜎2

]

1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑁𝐴

=
𝑁(𝑧)−

𝑛
2

𝑍𝑣 ∫ d𝜎𝑝(𝜎)∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣 ∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

exp

[

1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2𝜎2

]

=
𝑁(𝑧)−

𝑛
2

𝑍𝑣 ∫ d𝜎𝑝(𝜎)∫

𝐿

−𝐿

d𝑑 𝑥⃗0
𝑉 ∫

+∞

−∞
𝐷[𝜓̂𝛼] exp

[

𝑆𝑣 +
1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2𝜎2

]

=
𝑁(𝑧)−

𝑛
2

𝑍𝑣 ∫ d𝜎𝑝(𝜎)∫

𝐿

−𝐿

d𝑑 𝑥⃗0
𝑉

∏

𝛼,𝛽

[

det(𝐾𝛼𝛽)
]
1
2

=𝑁(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎)∫

𝐿

−𝐿

d𝑑 𝑥⃗0
𝑉

∏

𝛼,𝛽

[

det(𝐾𝛼𝛽𝐺
−1
𝛼𝛽 )

]
1
2

(S53)

where1598

𝑆𝑣 +
1
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2𝜎2 = −1

2

𝑛
∑

𝛼𝛽
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝐺−1

𝛼𝛽 (𝑥⃗ − 𝑥⃗
′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛽(𝑥⃗′) + 1

2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2𝜎2

= −1
2

𝑛
∑

𝛼𝛽
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝐾−1

𝛼𝛽 (𝑥⃗ − 𝑥⃗
′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛽(𝑥⃗′)

(S54)

𝐾−1
𝛼𝛽 (𝑥⃗, 𝑦) = 𝐺−1

𝛼𝛽 (𝑥⃗, 𝑦) −
𝜎2

𝑧
𝛿𝛼𝛽𝛿(𝑥⃗ − 𝑥⃗𝑜)𝛿(𝑦 − 𝑥⃗0)

det(𝐾−1
𝛼𝛽 𝐺𝛼𝛽) = 1 − 𝜎2

𝑧
𝛿𝛼𝛽𝐺(𝑥⃗0, 𝑥⃗0)

(S55)
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1
𝑍𝑣 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆𝑣𝑁𝐴 =𝑁(𝑧)−

𝑛
2
∫ d𝜎𝑝(𝜎)∫

𝐿

−𝐿

d𝑑 𝑥⃗0
𝑉

∏

𝛼,𝛽

[

det(𝐾−1
𝛼𝛽 𝐺𝛼𝛽)

]− 1
2

=𝑁(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎)∫

𝐿

−𝐿

d𝑑 𝑥⃗0
𝑉

∏

𝛼

[

det(𝐾−1
𝛼𝛼𝐺𝛼𝛼)

]− 1
2

=𝑁(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎)∫

𝐿

−𝐿

d𝑑 𝑥⃗0
𝑉

∏

𝛼
(1 − 𝜎2

𝑧
𝐺𝛼𝛼(𝑥⃗0, 𝑥⃗0))

− 1
2

=𝑁(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎)

∏

𝛼
(1 − 𝜎2

𝑧
𝐺𝛼𝛼(0))

− 1
2

=𝑁(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎) exp(−1

2
Tr𝑛 ln(1 −

𝜎2

𝑧 ∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)))

(S56)

In sum, the variational free energy 𝐹𝑣 is equal to1599

𝐹𝑣 =
∑

𝛼

1
2
Tr(𝑓−1𝐺𝛼𝛼) −

∑

𝛼,𝛽

1
2
ln(det(𝐺𝛼𝛽))

−𝑁(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎) exp(−1

2
Tr𝑛 ln(1 −

𝜎2

𝑧 ∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)))

=
∑

𝛼

𝑉
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

𝑓 (𝑘⃗)
− 𝑉

2 ∫
d𝑑 𝑘⃗
(2𝜋)𝑑

∑

𝛼,𝛽
ln(𝐺̃𝛼𝛽(𝑘⃗))

−𝑁(𝑧)−
𝑛
2
∫ d𝜎𝑝(𝜎) exp(−1

2
Tr𝑛 ln(1 −

𝜎2

𝑧 ∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)))

(S57)

Now let us find the best quadratic action 𝑆𝑣 that minimizes the variational free energy 𝐹𝑣1600

𝛿𝐹𝑣
𝛿𝐺̃𝛼𝛽

= 0 (S58)
The solution of eq. (S58) is given by1601

𝐺̃−1
𝛼𝛽 (𝑘⃗) = 𝛿𝛼𝛽𝐺̃

−1(𝑘⃗)
(S59)

1
𝑓 (𝑘⃗)

− ∫ d𝜎𝑝(𝜎)
𝜌𝜎2

𝑧 − 𝜎2 ∫ D𝑘⃗ 𝐺̃(𝑘⃗)
− 1
𝐺̃(𝑘⃗)

= 0
(S60)

where ∫ D𝑘⃗ ≡ ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

. By using eq. (S114)), we finally obtain1602

𝑔(𝑧) = lim
𝑛→0

2
𝑛𝑁

𝜕
𝜕𝑧
𝐹1 ≈ lim

𝑛→0

2
𝑛𝑁

𝜕
𝜕𝑧
𝐹𝑣 = ∫ d𝜎𝑝(𝜎) 1

𝑧 − 𝜎2 ∫ D𝑘⃗ 𝐺̃(𝑘⃗)

(S61)

Scale invariance of the covariance spectrum in the Gaussian variational Model1603

In Result, we point to two factors that contribute to the scale-invariance of eigenspectrum using1604

the high-density theory. In this section, we show that the same conclusion can be drawn by using1605

the Gaussian variational method. Furthermore, we examine how the heterogeneity of neural1606

activity influences the eigendensity calculated by the Gaussian variational model. We show that1607

𝜕𝑝(𝜆)
𝜕𝜌

, which characterizes the change of eigendensity due to sampling in the functional space,1608

decreases with the heterogeneity of neural activity described by higher-order moment of neural1609

activity variance, e.g., E(𝜎4).1610
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1611

1612

Let us rewrite eq. (S60) as1613

 = ∫ D𝑘⃗ 𝐺̃(𝑘⃗) = ∫ D𝑘⃗
𝑓 (𝑘⃗)

1 −𝑀(𝑧)𝑓 (𝑘⃗)

𝑀(𝑧) = ∫ d𝜎𝑝(𝜎)
𝜌𝜎2

𝑧 − 𝜎2(𝑧)

(S62)

To present a formal expression for the eigendensity, let us define 𝐑𝐞() ≡ 𝑔𝑟, 𝐈𝐦() ≡ 𝑔𝑖. From1614

eqs. (S3) and (S61), we find1615

𝑝(𝜆, 𝜌) = 1
𝜋

⟨

𝜎2𝑔𝑖
(𝜆 − 𝜎2𝑔𝑟)2 + 𝜎4𝑔2𝑖

⟩

𝜎

, (S63)
where ⟨...⟩𝜎 = ∫ ...𝑝(𝜎)d𝜎.1616

1617

A direct computation of eq. (S63), however, remains difficult: the complication arises from1618

the complex function𝑀(𝑧) in eq. (S62), which in turn is an integral function of . To streamline the1619

calculation, let us further define 𝐑𝐞(𝑀) ≡ 𝜌𝑎, 𝐈𝐦(𝑀) ≡ 𝜌𝑏. Writing it down explicitly, we have1620

𝑎 =

⟨

𝜎2(𝜆 − 𝜎2𝑔𝑟)
(𝜆 − 𝜎2𝑔𝑟)2 + 𝜎4𝑔2𝑖

⟩

𝜎

(S64)
1621

𝑏 =

⟨

𝜎4𝑔𝑖
(𝜆 − 𝜎2𝑔𝑟)2 + 𝜎4𝑔2𝑖

⟩

𝜎

(S65)
The real and imaginary part of  can now be expressed as functions of 𝑎 and 𝑏. Integrating eq. (S62)1622

in the spherical coordinates, we have1623

𝑔𝑟(𝜌) =
𝑆𝑑−1
(2𝜋)𝑑 ∫

𝜋∕𝜖

𝜋∕𝐿
d𝑘𝑘𝑑−1 𝑓 (𝑘)[1 − 𝜌𝑎𝑓 (𝑘)]

[1 − 𝜌𝑎𝑓 (𝑘)]2 + 𝜌2𝑏2𝑓 2(𝑘)

𝑔𝑖(𝜌) =
𝑆𝑑−1
(2𝜋)𝑑 ∫

𝜋∕𝜖

𝜋∕𝐿
d𝑘𝑘𝑑−1 𝜌𝑏𝑓 2(𝑘)

[1 − 𝜌𝑎𝑓 (𝑘)]2 + 𝜌2𝑏2𝑓 2(𝑘)

(S66)

where for clarity, we have abused the notation a bit by defining 𝑘 = ‖𝑘⃗‖; 𝑆𝑑−1 is the surface area of1624

unit 𝑑-ball in the momentum space. In order to evaluate the integrals analytically, we introduce an1625

ultraviolet cutoff 𝜋∕𝜖. Numerically, whether integrating up to 𝜋∕𝜖 or greater than this bound shows1626

little difference.1627

Numerical solution of the Gaussian variational method1628

With eqs. (S63) to (S66), we numerically calculate the eigendensity iteratively from the following1629

steps:1630

• Step 1: set the initial values of 𝑎 and 𝑏 as 𝑎0 = 1, 𝑏0 = 11631

• Step 2: solve for 𝑎 in eq. (S64) with fixed 𝑏1632

• Step 3: solve for 𝑏 in eq. (S65) with fixed 𝑎1633

• Step 4: iterate Step 2 and Step 3 10 times1634

• Step 5: calculate 𝑝(𝜆) using eq. (S63)1635

Note that we plug eq. (S66) into eqs. (S64) and (S65) in step 2-3.1636

Two contributing factors on the scale invariance1637

We next derive an analytical expression for eq. (S66) by considering the approximate power law1638

kernel function 𝑓 (𝑥⃗) ≈ 𝜖𝜇‖𝑥⃗‖−𝜇 , 𝜇 > 0, from which the high-density theory results on the scale1639

invariance can be extended.1640

1641
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By a change of variable 𝑥 = 𝑓 (𝑘) ∼ 𝜖𝜇𝑘−(𝑑−𝜇), and let 𝑥𝜖 ≡ 𝑓 ( 𝜋
𝜖
), 𝑥𝐿 ≡ 𝑓 ( 𝜋

𝐿
), we have1642

𝑔𝑖(𝜌) ∼
𝜖

𝜇𝑑
𝑑−𝜇

𝑑 − 𝜇 ∫

𝑥𝐿

𝑥𝜖

d𝑥
𝜌𝑏𝑥−

𝜇
𝑑−𝜇

[1 − 𝜌𝑎𝑥]2 + 𝜌2𝑏2𝑥2
, (S67)

where ∼ indicates that all constant numerical factors (e.g., 𝜋 and Γ(𝑑∕2)) are ignored. To compute1643

eq. (S67), we perform a branch cut at [0,∞], and perform a contour integral on the complex plane1644

following the path in Appendix 2—figure 1A. When 0 < 𝛽 = 1 − 𝜇
𝑑−𝜇

< 2, the integral on the large1645

circle Γ𝑅 and the small circle Γ𝜖 goes to zero as 𝑥𝐿 → ∞, 𝑥𝜖 → 0, leaving only two simple poles (zeros1646

of the function in the denominator) in the complex plane. By applying the residue theorem, we1647

find an expression for 𝑔𝑖 in the limit 𝐿 → ∞, 𝜖 → 01648

cos 𝜃 = − 𝑎
√

𝑎2 + 𝑏2

𝛽 =
𝑑 − 2𝜇
𝑑 − 𝜇

𝑔𝑖 ∼ − 𝜖
𝜇𝑑
𝑑−𝜇

𝑑 − 𝜇
sin(𝛽 − 1)𝜃
sin 𝜃 sin𝜋𝛽

𝜋𝑏𝜌1−𝛽

(𝑎2 + 𝑏2)𝛽∕2

(S68)

The analytical expression for 𝑔𝑟 is a bit more involving.1649

𝑔𝑟(𝜌) ∼
𝜖

𝜇𝑑
𝑑−𝜇

𝑑 − 𝜇 ∫

𝑥𝐿

𝑥𝜖

d𝑥 𝑥−
𝑑
𝑑−𝜇

[1 − 𝜌𝑎𝑥]2 + 𝜌2𝑏2𝑥2
− 𝑎
𝑏
𝑔𝑖 (S69)

It has two terms, the second term is similar to eq. (S67); the first term, however, diverges as 𝑥𝜖 → 0.1650

Thus, the radius of the small circle Γ𝜖 in Appendix 2—figure 1A cannot shrink to zero: this is precisely1651

the requirement of an ultraviolet cutoff in thewave vector 𝑘⃗. The contour integral on the large circle1652

Γ𝑅, on the other hand, goes to zero as 𝑥𝐿 → ∞. Thus, the integral on Γ𝜖 contributes to the final1653

result. By considering leading order term of 𝑥𝜖 for finite but small 𝑥𝜖 , we find1654

cos 𝜃 = − 𝑎
√

𝑎2 + 𝑏2

𝛾 =
−𝜇
𝑑 − 𝜇

𝑔𝑟 ∼ − 𝜖
𝜇𝑑
𝑑−𝜇

𝑑 − 𝜇
𝑥𝛾𝜖
𝛾

− 𝜖
𝜇𝑑
𝑑−𝜇

𝑑 − 𝜇
sin(𝛾 − 1)𝜃
sin 𝜃 sin𝜋𝛾

𝜋𝜌−𝛾

(𝑎2 + 𝑏2)𝛾∕2
− 𝑎
𝑏
𝑔𝑖

(S70)

Recall 𝑥𝜖 ∼ 𝜖𝜇

(𝜋∕𝜖)𝑑−𝜇
, and we find that the first term in 𝑔𝑟 is proportional to 𝜋𝜇∕𝜇, independent of 𝜖.1655

Appendix 2—figure 1. Calculate 𝑔𝑖 and 𝑔𝑟. A. The path of the contour integral for 𝑔𝑖, 𝑔𝑟 (eq. (S67)). B-C. Theheatmap of 𝑔𝑟 and 𝑔𝑖 with respect to 𝜆 and 𝜌. 𝑔𝑖, 𝑔𝑟 in B, C are calculated by the numerical method (Methods).The parameters are 𝑁 = 1024, 𝜌 = 10.24, 𝑑 = 2, 𝐿 = 10, 𝜇 = 0.5, 𝜖 = 0.03125. 𝜎2𝑖 is i.i.d. sampled from a
log-normal distribution with zero mean and a standard deviation of 0.5 in the natural logarithm of the 𝜎2𝑖values; we also normalize E(𝜎2𝑖 ) = 1.
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According to eqs. (S68) and (S70), one can immediately see that as 𝜇∕𝑑 → 0, the 𝜌-dependence1656

relationship vanishes for 𝑔𝑟 and 𝑔𝑖. We therefore conclude that a slower power-law decay in the1657

kernel function and/or a higher dimension of the functional space are two contributing factors for1658

the scale-invariance of the covariance spectrum.1659

Heterogeneity of neural activity across neurons enhances scale invariance1660

Next, we take a more close look at how the eigendensity changes with 𝜌 for finite but small 𝜇∕𝑑1661

and when 𝜆 ≫ 1. Using eq. (S63), we have1662

𝜕𝑝
𝜕𝜌

= 1
𝜋

⟨

𝜕𝑔𝑖
𝜕𝜌

𝜎2
[

(𝜆 − 𝜎2𝑔𝑟)2 + 𝜎4𝑔2𝑖
]

− 2𝜎6𝑔2𝑖
[

(𝜆 − 𝜎2𝑔𝑟)2 + 𝜎4𝑔2𝑖
]2

+
𝜕𝑔𝑟
𝜕𝜌

2𝜎4𝑔𝑖(𝜆 − 𝜎2𝑔𝑟)
[

(𝜆 − 𝜎2𝑔𝑟)2 + 𝜎4𝑔2𝑖
]2

⟩

𝜎

(S71)

From numerical calculation, we find that typically 𝑔𝑟 ≫ 𝑔𝑖, so one can use the approximation1663

𝜕𝑝
𝜕𝜌

≈ 1
𝜋

⟨

𝜕𝑔𝑖
𝜕𝜌

𝜎2

(𝜆 − 𝜎2𝑔𝑟)2 + 𝜎4𝑔2𝑖

⟩

𝜎

+ 1
𝜋

⟨

𝜕𝑔𝑟
𝜕𝜌

2𝜎4𝑔𝑖
(𝜆 − 𝜎2𝑔𝑟)3

⟩

𝜎
(S72)

Recall eq. (S63)1664

𝑝(𝜆, 𝜌) = 1
𝜋

⟨

𝜎2𝑔𝑖
(𝜆 − 𝜎2𝑔𝑟)2 + 𝜎4𝑔2𝑖

⟩

𝜎

, (S73)
Since 𝑝(𝜆, 𝜌) is very small for large 𝜆, a more appropriate measure is to examine1665

𝜕 log 𝑝
𝜕𝜌

≡ 1
𝑝
𝜕𝑝
𝜕𝜌

≈
𝜕𝑔𝑖
𝜕𝜌

1
𝑔𝑖

+ 2
𝜕𝑔𝑟
𝜕𝜌

⟨

𝜎4

(𝜆−𝜎2𝑔𝑟)3

⟩

𝜎
⟨

𝜎2

(𝜆−𝜎2𝑔𝑟)2

⟩

𝜎

(S74)

Considering the large eigenvalue case 𝜆 ≫ 𝜎2𝑔𝑟 (the numerical value of 𝑔𝑟 is on the order of 1), we1666

perform Taylor expansion and arrive at1667

⟨

𝜎2

(𝜆 − 𝜎2𝑔𝑟)2

⟩

𝜎
≈

⟨

𝜎2

𝜆2
+

2𝜎4𝑔𝑟
𝜆3

+
3𝜎6𝑔2𝑟
𝜆4

⟩

𝜎

(S75)
⟨

𝜎4

(𝜆 − 𝜎2𝑔𝑟)3

⟩

𝜎
≈
⟨

𝜎4

𝜆3
+

3𝜎6𝑔𝑟
𝜆4

⟩

𝜎
(S76)

Note ⟨𝜎2
⟩𝜎 ≡ E(𝜎2) is normalized to 1.1668

𝜕 log 𝑝
𝜕𝜌

≈
𝜕𝑔𝑖
𝜕𝜌

1
𝑔𝑖

+ 2
𝜕𝑔𝑟
𝜕𝜌

⟨

𝜎4

(𝜆−𝜎2𝑔𝑟)3

⟩

𝜎
⟨

𝜎2

(𝜆−𝜎2𝑔𝑟)2

⟩

𝜎

≈
𝜕𝑔𝑖
𝜕𝜌

1
𝑔𝑖

+ 2
𝜕𝑔𝑟
𝜕𝜌

⟨

𝜎4
⟩

𝜎 +
3𝑔𝑟
𝜆

⟨

𝜎6
⟩

𝜎

𝜆 + 2𝑔𝑟 ⟨𝜎4
⟩𝜎 +

3𝑔2𝑟
𝜆
⟨𝜎6

⟩𝜎

(S77)

By examining eqs. (S68) and (S70), we find that when 𝜆 ≫ 𝑔𝑟, 𝑎 ≫ 𝑏, 𝜃 ≈ 𝜋, 𝑔𝑟 decays weakly with 𝜌1669

while 𝑔𝑖 increases weakly with 𝜌 (also confirmed by numerical calculation, Appendix 2—figure 1B,C)1670

𝜕𝑔𝑟
𝜕𝜌

< 0,
𝜕𝑔𝑖
𝜕𝜌

> 0.

It is therefore straightforward to see from eq. (S77) that the higher-order moment (e.g., E(𝜎4)) in1671

the activity variance contributes to reducing the 𝜌-dependence in the eigendensity function.1672

The relationship between collapse index (CI) and eigendensity1673

In this section, we show how the collapse index (CI) introduced in Methods is related to eq. (S77),1674

namely how the eigendensity changes with the neuronal density in the functional space. Recall the1675
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definition of CI in eq. (13):1676

CI ∶= 1
log(𝑞0∕𝑞1) ∫

log 𝑞0

log 𝑞1

|

|

|

|

𝜕 log 𝜆(𝑞)
𝜕 log 𝜌

|

|

|

|

d log 𝑞

where1677

𝑞(𝜆) = ∫

∞

𝜆
𝑝(𝜆)d𝜆

we used implicit differentiation to compute 𝜕 log 𝜆(𝑞)
𝜕 log 𝜌

. For clarity, we write the function 𝑞(𝜆, 𝜌) explicitly1678

involving 𝜆 and 𝜌 as 𝑄(𝜆, 𝜌) in eqs. (S78) to (S80).1679

𝐹 (𝜆(𝑞, 𝜌), 𝑞, 𝜌) = 𝑄(𝜆(𝑞, 𝜌), 𝜌) − 𝑞 ≡ 0 (S78)
d𝐹 (𝜆(𝑞, 𝜌), 𝑞, 𝜌)

d𝜌
=
𝜕𝐹 (𝜆(𝑞, 𝜌), 𝑞, 𝜌)

𝜕𝜌
+
𝜕𝐹 (𝜆(𝑞, 𝜌), 𝑞, 𝜌)

𝜕𝜆
𝜕𝜆(𝑞, 𝜌)
𝜕𝜌

= 0 (S79)

𝜕𝜆(𝑞, 𝜌)
𝜕𝜌

= −
𝜕𝐹 (𝜆(𝑞,𝜌),𝑞,𝜌)

𝜕𝜌
𝜕𝐹 (𝜆(𝑞,𝜌),𝑞,𝜌)

𝜕𝜆

= −
𝜕𝑄(𝜆(𝑞,𝜌),𝜌)

𝜕𝜌
𝜕𝑄(𝜆(𝑞,𝜌),𝜌)

𝜕𝜆

(S80)
Now we can write CI as1680

𝜕 log 𝜆(𝑞, 𝜌)
𝜕 log 𝜌

=
𝜌

𝜆(𝑞, 𝜌)
𝜕𝜆(𝑞, 𝜌)
𝜕𝜌

= −
𝜌

𝜆(𝑞, 𝜌)

𝜕𝑞(𝜌,𝜆)
𝜕𝜌

𝜕𝑞(𝜌,𝜆)
𝜕𝜆

(S81)
from which we arrive at eq. (15) in Methods:1681

CI = 1
log(𝑞0∕𝑞1) ∫

log 𝑞0

log 𝑞1

|

|

|

|

𝜕 log 𝜆(𝑞, 𝜌)
𝜕 log 𝜌

|

|

|

|

d log 𝑞 = 1
log(𝑞0∕𝑞1) ∫

𝑞0

𝑞1

|

|

|

|

|

|

−
𝜌
𝑞𝜆

𝜕𝑞
𝜕𝜌
𝜕𝑞
𝜕𝜆

|

|

|

|

|

|

d𝑞

= 1
log(𝑞0∕𝑞1) ∫

𝜆(𝑞0)

𝜆(𝑞1)

|

|

|

|

|

|

−
𝜌
𝑞𝜆

𝜕𝑞
𝜕𝜌
𝜕𝑞
𝜕𝜆

|

|

|

|

|

|

𝜕𝑞
𝜕𝜆

d𝜆 = 1
log(𝑞0∕𝑞1) ∫

𝜆(𝑞1)

𝜆(𝑞0)

|

|

|

|

𝜌
𝑞𝜆
𝜕𝑞
𝜕𝜌

|

|

|

|

d𝜆

(S82)

Finally, we can rewrite CI as a function of 𝜕𝑝
𝜕𝜌
using a double integral:1682

CI = 1
log(𝑞0∕𝑞1) ∫

𝜆(𝑞1)

𝜆(𝑞0)

|

|

|

|

𝜌
𝑞𝜆
𝜕𝑞
𝜕𝜌

|

|

|

|

d𝜆 = 1
log(𝑞0∕𝑞1) ∫

𝜆(𝑞1)

𝜆(𝑞0)
d𝜆1

|

|

|

|

|

𝜌
𝑞𝜆1 ∫

∞

𝜆1

d𝜆2
𝜕𝑝(𝜆2)
𝜕𝜌

|

|

|

|

|

= 1
log(𝑞0∕𝑞1) ∫

𝜆(𝑞1)

𝜆(𝑞0)

1
𝜆1

d𝜆1
|

|

|

|

|

|

∫ ∞
𝜆1

d𝜆2𝑝(𝜆2)
𝜕 ln 𝑝(𝜆2)
𝜕 ln 𝜌

∫ ∞
𝜆1

d𝜆2𝑝(𝜆2)

|

|

|

|

|

|

(S83)

Compare high-density theory and Gaussian variational method1683

This section aims to determine the conditions under which the high-density approximation aligns1684

with the simulation results. To this end, we begin by comparing the kernel operator 𝐺̃ℎ(𝑘⃗) in the1685

high-density quadratic action and 𝐺̃𝑣(𝑘⃗) in the variational approximation. We identify the condition1686

when high-density theory would agree with the variational method as well as the numerical simula-1687

tion, namely 𝑧 ≫ ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃𝑣(𝑘⃗). Secondly, we give a precise re-derivation of the high-density result by1688

incorporating this condition into the variational approximation. Finally, we substitute ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃𝑣(𝑘⃗)1689

with ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) and estimate the parameter regime where the high-density theory would agree1690

with numerical simulation. This analysis yields a deeper understanding of the relationship between1691

high-density theory and variational method, and how they relate to simulation results.1692

A simple comparison of the two methods1693

For the sake of simplicity, we consider the correlation matrix with 𝑝(𝜎) = 𝛿(𝜎 − 1) in this section.1694

Returning to the explicit result (eqs. (S26) to (S28)),1695
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⟨Ξ𝑛(𝑧)⟩ = (det 𝑓 )−𝑛∕2(𝑧)−
𝑁𝑛
2
∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆1

(S84)

In the high-density approximation (eq. (S32))1696

𝑆ℎ = ∫

𝐿

−𝐿

d𝑑 𝑥⃗
𝑉

𝑁
2𝑧

𝑛
∑

𝛼=1
𝜓̂𝛼(𝑥⃗)2 − 1

2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′)

= −1
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝐺−1

ℎ (𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′)

(S85)

Here we introduce 𝐺ℎ as the kernel operator in the high-density quadratic action.1697

𝐺−1
ℎ (𝑥⃗ − 𝑦) = 𝑓−1(𝑥⃗ − 𝑦) − 𝑁

𝑉 𝑧
𝛿(𝑥⃗ − 𝑦)

(S86)
Fourier transform of 𝐺ℎ leads to1698

𝐺̃ℎ(𝑘⃗) =
𝑓 (𝑘⃗)

1 − 𝜌
𝑧
𝑓 (𝑘⃗)

(S87)

In the variational method (eq. (S60)), we have1699

𝐺̃𝑣(𝑘⃗) =
𝑓 (𝑘⃗)

1 − 𝐶𝑓 (𝑘⃗)
, 𝐶 =

𝜌

𝑧 − ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃𝑣(𝑘⃗)
,

(S88)

where we introduce 𝐺𝑣 as the kernel operator in the variational quadratic action. Clearly, the con-dition that 𝐺̃𝑣(𝑘⃗) approaches 𝐺̃ℎ(𝑘⃗) is given by
𝐶 →

𝜌
𝑧

, 𝑧 ≫ ∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃𝑣(𝑘⃗)

The function 𝑟𝑎𝑡𝑖𝑜𝑣(𝑧) is defined as:1700

𝑟𝑎𝑡𝑖𝑜𝑣(𝑧) =
1
𝑧 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃𝑣(𝑘⃗)

As 𝑟𝑎𝑡𝑖𝑜𝑣(𝑧) approaches 0, 𝐺̃𝑣(𝑘⃗) becomes identical to 𝐺̃ℎ(𝑘⃗). Note that 𝐺̃𝑣(𝑘⃗) is difficult to compute;1701

instead, we can compute and analyze ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) (see Appendix 3)1702

𝑟𝑎𝑡𝑖𝑜ℎ(𝑧) =
1
𝑧 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) (S89)
A re-derivation of the high-density result using the grand canonical ensemble1703

In this section, we re-derive the high-density result from the grand canonical ensemble and the1704

variational method. The derivation also allows us to reproduce the approximation condition1705

discussed in the previous section.1706

1707

Let us recall the calculation of the free energy 𝐹𝑣 (eq. (S57)) in the variational approximation1708

with 𝑝(𝜎) = 𝛿(𝜎 − 1)1709
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𝐹𝑣 =
𝑉
2
Tr𝑛 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

𝑓 (𝑘⃗)
−𝑁(𝑧)−

𝑛
2 exp(−1

2
Tr𝑛 log(1 −

1
𝑧 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)))

− 𝑉
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

∑

𝛼,𝛽
log(𝐺̃𝛼𝛽(𝑘⃗))

=𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

𝑓 (𝑘⃗)
−𝑁(𝑧)−

𝑛
2

[

1 − 1
𝑧 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)
]− 𝑛

2

− 𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

log 𝐺̃(𝑘⃗)

(S90)

lim
𝑛→0

𝐹𝑣 =
𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

𝑓 (𝑘⃗)
+ 𝑁𝑛

2
log

[

𝑧 − ∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)
]

− 𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

log 𝐺̃(𝑘⃗) +𝑁
(S91)

Following eqs. (S58) and (S60):1710

𝛿𝐹𝑣
𝛿𝐺̃

= 0
(S92)

1
𝑓 (𝑘⃗)

−
𝜌

𝑧 − ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)
− 1
𝐺̃(𝑘⃗)

= 0 (S93)

𝑔(𝑧) = lim
𝑛→0

2
𝑛𝑁

𝑑
𝑑𝑧
𝐹1 ≈ lim

𝑛→0

2
𝑛𝑁

𝑑
𝑑𝑧
𝐹𝑣 = lim

𝑛→0

2
𝑛𝑁

( 𝜕
𝜕𝑧
𝐹𝑣 + ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝜕𝐺̃(𝑘⃗)
𝜕𝑧

𝜕
𝜕𝐺̃(𝑘⃗)

𝐹𝑣)

= lim
𝑛→0

2
𝑛𝑁

𝜕
𝜕𝑧
𝐹𝑣 =

1

𝑧 − ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

(S94)

We can perform the same calculation in the high-density theory by considering the limit 𝑟𝑎𝑡𝑖𝑜𝑣(𝑧) =1711

1
𝑧
∫ d𝑑 𝑘⃗

(2𝜋)𝑑
𝐺̃𝑣(𝑘⃗) → 0:1712

lim
𝑛→0

lim
𝑟𝑎𝑡𝑖𝑜𝑣(𝑧)→0

𝐹𝑣 =
𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

𝑓 (𝑘⃗)
+ 𝑁𝑛

2
log

[

𝑧 − ∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)
]

− 𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

log 𝐺̃(𝑘⃗) +𝑁

=𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

𝑓 (𝑘⃗)
+ 𝑁𝑛

2
log(𝑧) − 𝑁𝑛

2
1
𝑧 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

− 𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

log 𝐺̃(𝑘⃗) +𝑁

(S95)

Therefore, we can define the free energy 𝐹ℎ in the high-density theory as1713

𝐹ℎ =
𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

𝑓 (𝑘⃗)
+ 𝑁𝑛

2
log(𝑧) − 𝑁𝑛

2
1
𝑧 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗) − 𝑉 𝑛
2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

log 𝐺̃(𝑘⃗) +𝑁
(S96)

then1714

𝛿𝐹ℎ
𝛿𝐺̃

= 0
(S97)
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1
𝑓 (𝑘⃗)

−
𝜌
𝑧
− 1
𝐺̃(𝑘⃗)

= 0
(S98)

This is precisely eq. (S87) derived in the previous section.1715

𝑔(𝑧) ≈ lim
𝑛→0

2
𝑛𝑁

𝜕
𝜕𝑧
𝐹ℎ =

1
𝑧
+ 1
𝑧2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃(𝑘⃗)

=1
𝑧
+ 1
𝑧2 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝑓 (𝑘⃗)

1 − 𝜌
𝑧
𝑓 (𝑘⃗)

=1
𝑧

[

1 + ∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝑓 (𝑘⃗)

𝑧 − 𝜌𝑓 (𝑘⃗)

]

=1
𝑧

[

1
𝜌 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝑧 − 𝜌𝑓 (𝑘⃗)

𝑧 − 𝜌𝑓 (𝑘⃗)
+ ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝑓 (𝑘⃗)

𝑧 − 𝜌𝑓 (𝑘⃗)

]

=1
𝜌 ∫

d𝑑 𝑘⃗
(2𝜋)𝑑

1
𝑧 − 𝜌𝑓 (𝑘⃗)

(S99)

which is the resolvent of high-density approximation (eq. (S34)).1716

Explicit expression for the integral1717

In this section, we provide an explicit expression for the integral ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) instead of1718

∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃𝑣(𝑘⃗), which is implicit and can not be calculated analytically. Like the derivation in Ap-1719

pendix 1—figure 17, we consider the lower and upper limits of integration for ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) as [0, 𝜋𝜖 ].1720

We then approximate the Fourier transform 𝑓 (𝑘⃗) as a power-law function. To ensure that the singu-1721

larity 𝑓 (𝑘⃗𝑠) = 𝑧
𝜌
of 𝐺̃ℎ(𝑘⃗) falls within the integration range of [0, 𝜋𝜖 ], we introduce a simple correction1722

𝑥𝜖 = 𝐶( 𝜋
𝜖
)𝜇−𝑑 to 𝑓 (𝑘⃗):1723

𝑓 (𝑘⃗) = 𝐶‖𝑘⃗‖𝜇−𝑑 − 𝑥𝜖
(S100)

where 𝐶 = 𝐶0𝜖𝜇 , 𝐶0 = 2𝑑−𝜇𝜋
𝑑
2
Γ( 𝑑−𝜇2 )

Γ( 𝜇2 )
are all constants depending on the parameters 𝑑, 𝜇, and 𝜖. Then1724

we compute the contour integral (Appendix 2—figure 1A) by Taylor expansion. As a result, we have1725

∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) =∫

𝜋
𝜖

0

d𝑑 𝑘⃗
(2𝜋)𝑑

𝑓 (𝑘⃗)

1 − 𝜌
𝑧
𝑓 (𝑘⃗)

= 1
2𝜋(𝜇 − 𝑑)

𝐶𝑃 𝑧
𝜌
(

∞
∑

𝑗=0

𝑥1−𝑃+𝑗𝜖 ( 𝑧
𝜌
+ 𝑥𝜖)−1−𝑗

1 − 𝑃 + 𝑗
− 𝜋𝑐𝑜𝑡(𝜋(1 − 𝑃 ))(𝑧

𝜌
+ 𝑥𝜖)−𝑃 )

− 1
2𝜋(𝜇 − 𝑑)

𝐶𝑃 𝑧
𝜌
(

∞
∑

𝑗=0

𝑥1−𝑃+𝑗𝜖 ( 𝑧
𝜌
+ 𝑥𝜖)−1−𝑗

−𝑃 + 𝑗
− 𝜋𝑐𝑜𝑡(𝜋(−𝑃 ))(𝑧

𝜌
+ 𝑥𝜖)−𝑃−1𝑥𝜖)

= 1
2𝜋(𝑑 − 𝜇)

𝐶𝑃 𝑧
𝜌
(

∞
∑

𝑗=0

𝑥1−𝑃+𝑗𝜖 ( 𝑧
𝜌
+ 𝑥𝜖)−1−𝑗

(𝑃 − 1 − 𝑗)(𝑃 − 𝑗)
− 𝜋𝑐𝑜𝑡(𝜋𝑃 )(𝑧

𝜌
+ 𝑥𝜖)−𝑃

𝑧
𝑧 + 𝜌𝑥𝜖

)

= 𝜋𝑑−1𝑧
2(𝑑 − 𝜇)𝜌𝜖𝑑

(
∞
∑

𝑗=0

( 𝑧
𝜌𝑥𝜖

+ 1)−1−𝑗

(𝑃 − 1 − 𝑗)(𝑃 − 𝑗)
− 𝜋𝑐𝑜𝑡(𝜋𝑃 )( 𝑧

𝜌𝑥𝜖
+ 1)−𝑃 𝑧

𝑧 + 𝜌𝑥𝜖
)

(S101)

where 𝑃 = 𝑑
𝑑−𝜇

> 1.1726
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1727

Now let us take a close look at the behavior of the function 𝑟𝑎𝑡𝑖𝑜ℎ(𝑧) (eq. (S89)), plotted in1728

Appendix 2—figure 2A,B. For small 𝑧, this function is negative. It then crosses zero and has a peak.1729

As 𝑧 → ∞, the 𝑟𝑎𝑡𝑖𝑜ℎ approaches zero. This is because eq. (S101) approaches a positive constant,1730

which is given by1731

lim
𝑧→∞∫

d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) =
𝜋𝑑−1𝐶2

2(𝑑 − 𝜇)(𝑃 − 1)𝑃
,

where 𝐶2 = 𝐶( 𝜋
𝜖
)𝜇. For 𝑧 ≥ 1, we find the leading order expansion at 𝑗 = 1 already gives an accurate1732

approximation (Appendix 2—figure 2A,B).1733

∫
d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) ≈

1
2𝜋(𝑑 − 𝜇)

𝐶𝑃 𝑧
𝜌

[𝑥1−𝑃𝜖 ( 𝑧
𝜌
+ 𝑥𝜖)−1

(𝑃 − 1)(𝑃 )
+
𝑥2−𝑃𝜖 ( 𝑧

𝜌
+ 𝑥𝜖)−2

(𝑃 − 2)(𝑃 − 1)
− 𝜋𝑐𝑜𝑡(𝜋𝑃 )(𝑧

𝜌
+ 𝑥𝜖)

− 𝑑
𝑑−𝜇

𝑧
𝑧 + 𝜌𝑥𝜖

] (S102)
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Appendix 2—figure 2. Relationship between 𝑟𝑎𝑡𝑖𝑜ℎ and 𝑧. A. 𝜌 = 1024, B. 𝜌 = 256. Blue line: 𝑟𝑎𝑡𝑖𝑜ℎ calculatednumerically. Red line: 100-order expansion of eq. (S101), which perfectly overlaps with the blue line. Greenline: expansion to the first order. Other parameter: 𝜇 = 0.5, 𝑑 = 2, 𝜖 = 0.03125. C. Relationship between 𝜌𝜖𝑑and dimension 𝑑 with fixed 𝜇
𝑑 (eq. (S105)).

Estimate the parameter condition when the high-density theory best agrees with numer-1734

ical simulation1735

By analyzing the properties of the function ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗), we think the high-density theory provides1736

an accurate approximation when the zero-crossing of ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) is near 𝑧 = 1 (the peak of low-1737

density resultMézard et al. (1999))1738

The root 𝑧0 of the integral ∫ d𝑑 𝑘⃗
(2𝜋)𝑑

𝐺̃ℎ(𝑘⃗) is given by1739

𝜌𝑥𝜖
𝑧0

= 𝑔1(𝑑, 𝜇) (S103)
It is easy to see that 𝑔1(𝑑, 𝜇) is a function of 𝑃 (or 𝑑

𝜇
) from eq. (S101). We can rewrite eq. (S103) as1740

𝜌𝑥𝜖
𝑧0

= 𝑔2(
𝑑
𝜇
) (S104)

Here, we can also see that 𝑧0 can be expressed as:
𝑧0 =

𝑐0𝜋𝜇−𝑑𝜌𝜖𝑑

𝑔1(𝑑, 𝜇)

Using this expression for 𝑧0 and letting 𝑧0 = 1, we can derive the following equation for 𝜌𝜖𝑑 , a1741

dimensionless parameter that determines the condition when the high-density theory is an accurate1742

approximation of our ERM model:1743
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𝜌𝜖𝑑 =
𝑧0𝑔2(

𝑑
𝜇
)Γ( 𝜇

2
)

2𝑑−𝜇𝜋𝜇−
𝑑
2 Γ( 𝑑−𝜇

2
)

(S105)
Appendix 2—figure 2C shows how 𝜌𝜖𝑑 changes as a function 𝑑 for a small and fixed 𝜇∕𝑑. For exam-
ple, when 𝑑 = 2, 𝜇 = 0.5, 𝜖 = 0.03125, we find

𝜌𝜖𝑑 = 0.83, or 𝜌 = 850

This estimate is also consistent with our numerical simulation (Appendix 1—figure 3).1744

Wick rotation1745

To ensure mathematical rigor in Appendix 1—figure 17, we should make sure that the action 𝑆11746

in eq. (S43) is a real number. Here we use Wick rotation to transform eq. (S25) to eq. (S27). The1747

Gaussian integral eq. (S26) can be divergent when 𝐺−1(𝑥⃗ − 𝑦) is not positive definite, To address1748

this issue, we can always write the partition function ⟨Ξ𝑛(𝑧)⟩ as a Gaussian integral by choosing the1749

appropriate axes with Wick rotation.1750

⟨Ξ𝑛(𝑧)⟩ = (2𝜋𝑖)
𝑁𝑛
2 (det 𝑓 )−𝑛∕2 ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆1

(S106)

𝑆1 = 𝑁 ln𝐴 − 𝑖
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗ − 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′)

We can now change the integration variables by diagonalizing 𝜓̂𝛼 to 𝜓̃𝛼 via 𝜓̃𝛼 = 𝑄𝜓̂𝛼 ,where 𝑄 is1751

Fourier base1752

⟨Ξ𝑛(𝑧)⟩ = (2𝜋𝑖)
𝑁𝑛
2 (det 𝑓 )−𝑛∕2 ∫

+∞

−∞
𝐷[𝜓̃𝛼]𝑒𝑆1

(S107)

𝑆1 = 𝑁 ln 𝐴̃ − 𝑖
2

𝑛
∑

𝛼=1
∫

+∞

−∞
d𝑑 𝑘⃗𝑓−1(𝑘⃗)𝜓̃𝛼(𝑘⃗)2

𝐴̃ = ∫

∞

−∞

d𝑑 𝑘⃗
𝑉

(𝑧)
𝑛
2 exp

[

𝑖
2𝑧

𝑛
∑

𝛼=1
𝜓̃𝛼(𝑘⃗)2

] (S108)

by letting 𝐿 → ∞. Note that 𝑒𝑆1 is analytic. Thus if1753

lim
𝜓̃𝛼→(1−𝑖)∞

𝑒𝑆1 = 0

and the convergence rate is faster than 1∕𝜓̃2, we can apply the Wick rotation 𝜓𝛼(𝑥⃗) → 𝜓𝛼(𝑥⃗)𝑒−𝑖
𝜋
4 :1754

instead of computing the integral on the real axis 𝐶1, we now rotate the integral line 45 degree1755

clockwise to 𝐶3 in the complex plane:1756

∫𝐶1
𝐷[𝜓̂𝛼]𝑒𝑆1 = ∫𝐶3

𝐷[𝜓̂𝛼]𝑒𝑆1
(S109)

On the other hand, if
lim

𝜓̃𝛼→(1+𝑖)∞
𝑒𝑆1 = 0

and the convergence rate is faster than 1∕𝜓̃2, we can apply the Wick rotation 𝜓𝛼(𝑥⃗) → 𝜓𝛼(𝑥⃗)𝑒𝑖
𝜋
4 ,1757
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Appendix 2—figure 3. Wick rotation in complex plane

namely to rotate the integral line 45 degree counterclockwise to 𝐶2:1758

∫𝐶1
𝐷[𝜓̂𝛼]𝑒𝑆1 = ∫𝐶2

𝐷[𝜓̂𝛼]𝑒𝑆1
(S110)

As a simple example, consider a one-dimensional Gaussian integral1759

∫

∞

−∞
𝑑𝑥𝑒−𝑖𝑘𝑥2

When 𝑘 > 0, we can use the Wick rotation 𝑥→ 𝑥𝑒−𝑖
𝜋
41760

∫

∞

−∞
𝑑𝑥𝑒−𝑖𝑘𝑥2 = 𝑒−𝑖

𝜋
4
∫

∞

−∞
𝑑𝑥𝑒−𝑘𝑥2 = 𝑒−𝑖

𝜋
4

√

2𝜋
𝑘

=
√

2𝜋
𝑖𝑘

When 𝑘 < 0, we can use the Wick rotation 𝑥→ 𝑥𝑒𝑖
𝜋
41761

∫

∞

−∞
𝑑𝑥𝑒−𝑖𝑘𝑥2 = 𝑒𝑖

𝜋
4
∫

∞

−∞
𝑑𝑥𝑒𝑘𝑥2 = 𝑒𝑖

𝜋
4

√

2𝜋
−𝑘

=
√

2𝜋
𝑖𝑘

Without loss of generality, we rotate 𝜓𝛼(𝑥⃗) → 𝜓𝛼(𝑥⃗)𝑒−𝑖
𝜋
4 in Appendix 1—figure 17 for subsequent1762

calculations.1763

Grand Canonical Ensemble1764

When using the Gaussian variational Approximation, we consider a critical extension from the1765

canonical ensemble to the grand canonical ensemblewhen computing the partition function (eq. (S6)).1766

We would like to justify this approximation in this section. Recall that the resolvent is given by1767

𝑔(𝑧) = − 2
𝑁
𝜕𝑧 ⟨ln Ξ(𝑧)⟩

where Ξ(𝑧) can be viewed as the canonical partition function, the ⟨...⟩ is the average over all random1768

matrices 𝐶 for a given 𝑁 . Let us now generalize (eq. (S6)) into grand canonical ensemble, namely1769

𝑔(𝑧) =
⟨

− 2
𝑁
𝜕𝑧 ⟨ln Ξ(𝑧)⟩

⟩

𝑁
(S111)
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where ⟨

...
⟩

𝑁 indicates that we need to average over all possible random matrices and across all1770

possible 𝑁 , with the probability to have a matrix size 𝑁 given by the Poisson distribution 𝑃 (𝑁) =1771

𝑒−𝑎 𝑎
𝑁

𝑁!
, where 𝑎 = ⟨𝑁⟩. When ⟨𝑁⟩ is large, 𝑃 (𝑁) has a very sharp peak at ⟨𝑁⟩, and eq. (S111) can be1772

approximated as1773

𝑔(𝑧) ≈ − 2
⟨𝑁⟩

𝜕𝑧 ⟨ln Ξ(𝑧)⟩⟨𝑁⟩

(S112)
Using the replica trick, we recall eq. (S9)1774

𝑔(𝑧) = lim
𝑛→0

− 2
𝑁𝑛

𝜕𝑧 ln ⟨Ξ𝑛(𝑧)⟩

Let us now define the grand canonical partition function as1775

 =
∞
∑

𝑁=0
⟨Ξ𝑛𝑁 (𝑧)⟩

𝑎𝑁

𝑁!
, (S113)

Likewise, the resolvent in eq. (S9) is generalized to1776

𝑔(𝑧) = lim
𝑛→0

− 2
⟨𝑁⟩𝑛

𝜕𝑧 ln. (S114)
To see whether this definition makes sense, we write1777

𝑔(𝑧) = lim
𝑛→0

− 2
⟨𝑁⟩𝑛

∑∞
𝑁=0 𝜕𝑧⟨Ξ

𝑛
𝑁 (𝑧)⟩𝑎

𝑁∕𝑁!


= lim
𝑛→0

− 2
⟨𝑁⟩𝑛

∑∞
𝑁=0 𝜕𝑧[1 + 𝑛⟨ln Ξ𝑁 (𝑧)⟩]𝑎

𝑁∕𝑁!
∑∞

𝑁=0⟨Ξ
𝑛
𝑁 (𝑧)⟩

𝑎𝑁

𝑁!

= − 2
⟨𝑁⟩

∑∞
𝑁=0 𝜕𝑧⟨ln Ξ𝑁 (𝑧)⟩𝑎

𝑁∕𝑁!
∑∞

𝑁=0
𝑎𝑁

𝑁!

= − 2
⟨𝑁⟩

𝜕𝑧
⟨

ln Ξ(𝑧)
⟩

𝑁
,

(S115)

where the second equality uses the identity
ln Ξ = lim

𝑛→0

Ξ𝑛 − 1
𝑛

,

and the last equality is indeed eq. (S112) discussed earlier.1778

1779

Returning back to the explicit form of the grand canonical partition function in our ERM model1780

(eqs. (S26) to (S28)), we have1781

 = ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆0+𝑎𝐴 = ∫

+∞

−∞
𝐷[𝜓̂𝛼]𝑒𝑆0+⟨𝑁⟩𝐴. (S116)

Here 𝜓 is the auxiliary fields (eq. (S12)), 𝑆0 = − 1
2

𝑛
∑

𝛼=1
∫ +∞
−∞ d𝑥⃗d𝑥⃗′𝑓−1(𝑥⃗− 𝑥⃗′)𝜓̂𝛼(𝑥⃗)𝜓̂𝛼(𝑥⃗′) and 𝐴 are terms1782

defined in eqs. (S26) to (S28). eq. (S116) is used in Appendix 1—figure 17 to compute the free1783

energy.1784

E-I balanced asynchronized model Summary1785

In this section, we discuss the E-I balanced asynchronized model Renart et al. (2010), which pre-1786

dicts a different scaling D N under random sampling, since the variance 𝐸𝑘
𝑖≠𝑗(𝑐

2
𝑖𝑗) scales as 1/N and1787

diminishes as N approaches large limit.1788
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Model1789

The simulation of binary networks involves updating neuron states within a network architecture1790

identical to analytical studies. The update rule is probabilistic, with neuron activities set based1791

on synaptic currents and a firing threshold. The dynamics resolution improves with network size,1792

with neuron time constants effectively representing changes in firing activity. Parameters for sim-1793

ulations include connection probabilities, mean rates, thresholds, and synaptic strengths, scaled1794

appropriately for network size.1795

Update Rule: 𝜎𝛼𝑖 (𝑡 + 1) = Θ
(

∑

𝑗 𝐽
𝛼𝛽
𝑖𝑗 𝜎

𝛽
𝑗 (𝑡) − 𝜃

𝛼
𝑖

)

1796

1797

Dynamics Resolution: 𝑑𝑡 = 𝜏
3𝑁

1798

1799

In the simulation of binary networks, the model’s dynamics are governed by a set of param-1800

eters, each with a specific role:1801

𝜎𝛼𝑖 (𝑡+ 1): This represents the state of neuron 𝑖 in population 𝛼 at the next time step 𝑡+ 1. The state1802

is binary, where 1 indicates the neuron is active (firing) and 0 indicates it is inactive.1803

Θ(⋅): The Heaviside step function used in the update rule. It determines the neuron’s next state1804

by comparing the net input to the neuron against its firing threshold. If the net input exceeds the1805

threshold, the neuron’s state is set to active; otherwise, it remains or becomes inactive.1806
∑

𝑗 𝐽
𝛼𝛽
𝑖𝑗 𝜎

𝛽
𝑗 (𝑡): This sum represents the total synaptic input to neuron 𝑖 from all neurons 𝑗 in popula-1807

tion 𝛽 at time 𝑡. 𝐽 𝛼𝛽𝑖𝑗 is the synaptic weight from neuron 𝑗 in population 𝛽 to neuron 𝑖 in population1808

𝛼, and 𝜎𝛽𝑗 (𝑡) is the state of neuron 𝑗 at time 𝑡.1809

𝜃𝛼𝑖 : The firing threshold of neuron 𝑖 in population 𝛼. It is the value against which the net synaptic1810

input is compared to determine whether neuron 𝑖 will fire (transition to state 1) or not (remain in1811

state 0).1812

1813

𝛼 = {𝐸, 𝐼}, 𝛽 = {𝐸, 𝐼,𝑋}: Represents a specific population of neurons within the network. E:1814

excitatory neurons, I: inhibitory neurons, or X: external source of neurons that provide inputs to1815

the network but are not influenced by the network’s internal dynamics.1816

Firing Rate Correlation 𝑟1817

The mean firing rate correlation 𝐸(𝑟) scales inversely with the network size 𝑁 , specifically, 𝐸(𝑟) ∼1818

1∕𝑁 . The standard deviation 𝜎𝑟 of 𝑟 decays only as 1∕√𝑁 Renart et al. (2010).1819

Given that the variance of 𝑟, denoted as Var(𝑟), is 𝑏
𝑁
, and the expected value of 𝑟, denoted as 𝐸(𝑟),1820

is 𝑎
𝑁
, where𝑁 is the sample size, and 𝑎 and 𝑏 are constants, we aim to calculate 𝐸(𝑟2), the expected1821

value of the square of the correlation coefficient 𝑟.1822

The term 𝐸𝑘
𝑖≠𝑗(𝑐

2
𝑖𝑗) in PR dimension is given by:1823

Var(𝑟) = 𝐸(𝑟2) − [𝐸(𝑟)]2 (S117)
Substituting Var(𝑟) = 𝑏

𝑁
and 𝐸(𝑟) = 𝑎

𝑁
into the equation, we get:1824

𝐸𝑘
𝑖≠𝑗(𝑐

2
𝑖𝑗) = 𝐸(𝑟2) = 𝑏

𝑁
+
( 𝑎
𝑁

)2
∼ 1
𝑁

(S118)
Thus in PR dimension 𝐷PR(𝐶) = 𝑁2(𝐸[𝜎2])2

𝑁𝐸[𝜎4]+𝑁(𝑁−1)𝐸𝑖≠𝑗 [𝑐2𝑖𝑗 ]
, the term𝑁𝐸[𝜎4] and𝑁(𝑁 − 1)𝐸𝑖≠𝑗[𝑐2𝑖𝑗] are of the1825

same order, and the PR dimension will not reach the upper bound (𝐸[𝜎2])2
𝐸𝑖≠𝑗 [𝑐2𝑖𝑗 ]

.1826
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Appendix 31827

Appendix 3—figure 1. Neural activity patterns in anatomical and functional space during hunting
(click here). Single-trial examples of fish 1 and fish 3. A. Inferred firing rate activity in anatomical space. Scalebar, 100µm. B. Inferred firing rate activity in functional space. Functional space organization of the controldata inferred by fitting the ERM and MDS in Result. The cyan ellipse serves as a visual aid for the cluster size:it encloses 95% of the neurons belonging to that cluster (Methods). The inset illustrates the functional spaceorganization, similar to that shown in Appendix 1—figure 15C. The colorbars in panels A and B depict theinferred activity magnitude of individual neurons. C. Simultaneous behavior recording alongside the neuralactivity. Time, seconds.

https://www.youtube.com/watch?v=sQ5uq_MiwDg
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