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Abstract Understanding neural activity organization is vital for deciphering brain function. By
recording whole-brain calcium activity in larval zebrafish during hunting and spontaneous
behaviors, we find that the shape of the neural activity space, described by the neural covariance
spectrum, is scale-invariant: a smaller, randomly sampled cell assembly resembles the entire
brain. This phenomenon can be explained by Euclidean Random Matrix theory, where neurons
are reorganized from anatomical to functional positions based on their correlations. Three
factors contribute to the observed scale invariance: slow neural correlation decay, higher
functional space dimension, and neural activity heterogeneity. In addition to matching data from
zebrafish and mice, our theory and analysis demonstrate how the geometry of neural activity
space evolves with population sizes and sampling methods, thus revealing an organizing
principle of brain-wide activity.

Introduction

Geometric analysis of neuronal population activity has revealed the fundamental structures of neu-
ral representations and brain dynamics Churchland et al. (2012); Zhang et al. (2023); Kriegeskorte
and Wei (2021); Chung and Abbott (2021). Dimensionality reduction methods, which identify col-
lective or latent variables in neural populations, simplify our view of high-dimensional neural data
Cunningham and Yu (2014). Their applications to optical and multi-electrode recordings have be-
gun to reveal important mechanisms by which neural cell assemblies process sensory information
Stringer et al. (2019a); Si et al. (2019), make decisions Mante et al. (2013); Yang et al. (2022), main-
tain working memory Xie et al. (2022) and generate motor behaviors Churchland et al. (2012);
Nguyen et al. (2016); Lindén et al. (2022); Urai et al. (2022).

In the past decade, the number of neurons that can be simultaneously recorded in vivo has grown
exponentially Buzsdki (2004); Ahrens et al. (2012); Jun et al. (2017); Stevenson and Kording (2011);
Nguyen et al. (2016); Sofroniew et al. (2016); Lin et al. (2022); Meshulam et al. (2019); Demas et al.
(2021). This increase spans various brain regions Musall et al. (2019); Stringer et al. (2019a); Jun
et al. (2017) and the entire mammalian brain Stringer et al. (2019b); Kleinfeld et al. (2019). As
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more neurons are recorded, the multidimensional neural activity space, with each axis represent-
ing a neuron’s activity level (Figure 1A), becomes more complex. The changing size of observed
cell assemblies raises a number of basic questions. How does this space’s geometry evolve and
what structures remain invariant with increasing number of neurons recorded? A key measure,
the effective dimension or participation ratio (denoted as Dy, Figure 1B), captures a major part of
variability in neural activity Recanatesi et al. (2019); Litwin-Kumar et al. (2017); Gao et al. (2017);
Clark et al. (2023); Dahmen et al. (2020). How does Dy vary with the number of sampled neurons
(Figure TA)? Two scenarios are possible: Dpg grows continuously with more sampled neurons; Dy
saturates as the sample size increases. Which scenario fits the brain? Furthermore, even if two cell
assemblies have the same D, they can have different shapes (the geometric configuration of the
neural activity space, as dictated by the eigenspectrum of the covariance matrix, Figure 1C). How
does the shape vary with the number of neurons sampled? Lastly, are we going to observe the
same picture of neural activity space when using different recording methods such as two-photon
microscopy, which records all neurons in a brain region, versus Neuropixels Jun et al. (2017), which
conducts a broad random sampling of neurons?

Here, we aim to address these questions by analyzing brain-wide Ca®* activity in larval zebrafish
during hunting or spontaneous behavior (Figure 2A) recorded by Fourier light-field microscopy
Cong et al. (2017). The small size of this vertebrate brain, together with the volumetric imaging
method, enables us to capture a significant amount of neural activity across the entire brain si-
multaneously. To characterize the geometry of neural activity beyond its dimensionality Dpg, we
examine the eigenvalues or spectrum of neural covariance Hu and Sompolinsky (2022) (Figure 1C).
The covariance spectrum has been instrumental in offering mechanistic insights into neural circuit
structure and function, such as the effective strength of local recurrent interactions and the de-
piction of network motifs Hu and Sompolinsky (2022); Morales et al. (2023); Dahmen et al. (2020).
Intriguingly, we find that both the dimensionality and covariance spectrum remain invariant for cell
assemblies that are randomly selected from various regions of the zebrafish brain. We also ver-
ify this observation in datasets recorded by different experimental methods, including light-sheet
imaging of larval zebrafish Chen et al. (2018), two-photon imaging of mouse visual cortex Stringer
et al. (2019h), and multi-area Neuropixels recording in the mouse Stringer et al. (2019b). To ex-
plain the observed phenomenon, we model the covariance matrix of brain-wide activity by gener-
alizing the Euclidean Random Matrix (ERM) Mézard et al. (1999) such that neurons correspond to
points distributed in a d-dimensional functional or feature space, with pairwise correlation decay-
ing with distance. The ERM theory, studied in theoretical physics Mézard et al. (1999); Goetschy
and Skipetrov (2013), provides extensive analytical tools for a deep understanding of the neural co-
variance matrix model, allowing us to unequivocally identify three crucial factors for the observed
scale invariance.

Building upon our theoretical results, we further explore the connection between the spatial ar-
rangement of neurons and their locations in functional space, which allows us to distinguish among
three sampling approaches: random sampling, anatomical sampling (akin to optical recording of
all neurons within a specific region of the brain) and functional sampling Meshulam et al. (2019).
Our ERM theory makes distinct predictions regarding the scaling relationship between dimension-
ality and the size of cell assembly, as well as the shape of covariance eigenspectrum under various
sampling methods. Taken together, our results offer a new perspective for interpreting brain-wide
activity and unambiguously show its organizing principles, with unexplored consequences for neu-
ral computation.
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Figure 1. The relationship between the geometric properties of the neural activity space and the size
of neural assembilies. A. lllustration of how dimensionality of neural activity (Dpg) changes with the number
of recorded neurons. B. The eigenvalues of the neural covariance matrix dictate the geometrical

configuration of the neural activity space with ﬁ, being the distribution width along a principal axis. C.
Examples of two neural populations with identical dimensionality (Dpg = 25/11 = 2.27) but different spatial
configurations, as revealed by the eigenvalue spectrum (green: {4;} = {7,7,1}, blue: {4;} = {9,3,3}).
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Results

Geometry of neural activity across random cell assemblies in zebrafish brain

We recorded brain-wide Ca®* activity at a volume rate of 10 Hz in head-fixed larval zebrafish (Fig-
ure 2A) during hunting attempts (Methods) and spontaneous behavior using a Fourier light field
microscopy Cong et al. (2077). Approximately 2000 ROIs (1977.3 + 677.1, mean + SD) with a diam-
eter of 16.84 + 8.51 pm were analyzed per fish based on voxel activity (Methods). These ROIs likely
correspond to multiple nearby neurons with correlated activity. Henceforth, we refer to the ROIs
as "neurons" for simplicity.

We first investigate the dimensionality of neural activity Dpg (Figure 1B) in a randomly chosen cell
assembly in zebrafish, similar to multi-area Neuropixels recording in a mammalian brain. We fo-
cus on how Dg changes with a large sample size N. We find that if the mean squared covariance
remains finite instead of vanishing with N, the dimensionality Dy (Figure 1B) becomes sample size
independent and depends only on the variance ¢7 and the covariance C;; between neurons i and
J:

E(cf‘.z)2

lim Dpg =

—_—, M
N-co Ei#(cl?j)

where E(...) denotes average across neurons (Methods and Dahmen et al. (2020)). The finite mean
squared covariance condition is supported by the observation that the neural activity covariance
C,; is positively biased and widely distributed with a long tail (Appendix 1—figure 2A). As predicted,
the data dimensionality grows with sample size and reaches the maximum value specified by eq. (1)
(Figure 2D).

Next, we investigate the shape of the neural activity space described by the eigenspectrum of
the covariance matrix derived from the activity of N randomly selected neurons (Figure 2C). When
the eigenvalues are arranged in descending order and plotted against the normalized rank r/N,
wherer =1,..., N, (we refer to it as the rank plot), this curve shows an approximate power law that
spans 10 folds. Interestingly, as the size of the covariance matrices decreases (N decreases), the
eigenspectrum curves nearly collapse over a wide range of eigenvalues. This pattern holds across
diverse datasets and experimental techniques (Figure 2F, Appendix 1—figure 2E-L). The similarity
of the covariance matrices of randomly sampled neural populations can be intuitively visualized
(Figure 2E), after properly sorting the neurons (Methods).

The scale invariance in the neural covariance matrix - the collapse of the covariance eigenspec-
trum under random sampling - is non-trivial. The spectrum is not scale-invariant in a common
covariance matrix model based on independent noise (Figure 2G). It is absent when replacing the
neural covariance matrix eigenvectors with random ones, keeping the eigenvalues identical (Fig-
ure 2H). A recurrent neural network with random connectivity Hu and Sompolinsky (2022) does
not yield a scale-invariant covariance spectrum (Figure 2l). A recently developed latent variable
model Morrell et al. (2024) (Appendix 1—figure 23), which is able to reproduce avalanche critical-
ity, also fails to generate the scale-invariant covariance spectrum. Thus, a new model is needed for
the covariance matrix of neural activity.

Modeling covariance by organizing neurons in functional space

Dimension reduction methods simplify and visualize complex neuron interactions by embedding
them into a low-dimensional map, within which nearby neurons have similar activities. Inspired
by these ideas, we use the Euclidean Random Matrix (ERM Mézard et al. (1999)) to model neural
covariance. Imagine sprinkling neurons uniformly distributed on a d-dimensional functional space
of size L (Figure 3A), where the distance between neurons i and j affects their correlation. Let
X, represent the functional coordinate of the neuron i. The distance-correlation dependency is
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Figure 2. Whole-brain calcium imaging of zebrafish neural activity and the phenomenon of its

scale-invariant covariance eigenspectrum. A. Rapid light-field Ca®* imaging system for whole brain neural
activity in larval zebrafish. B. Inferred firing rate activity from the brain-wide calcium imaging. The ROlIs are
sorted by their weights in the first principal component Stringer et al. (2019b). C. Procedure of calculating the
covariance spectrum on the full and sampled neural activity matrices. D. Dimensionality (circles, average
across 8 samplings (dots)), as a function of the sampling fraction. The curve is the predicted dimensionality
using eq. (5). E. Iteratively sampled covariance matrices. Neurons are sorted in each matrix to maximize
values near the diagonal. F. The covariance spectra, i.e., eigenvalue vs. rank/N, for randomly sampled
neurons of different sizes (colors). The gray dots represent the sorted variances C;; of all neurons. G to I.
Same as F but from three models of covariance (see details in Methods): (G) a Wishart random matrix
calculated from a random activity matrix of the same size as the experimental data; (H) replacing the
eigenvectors by a random orthogonal set; (I) covariance generated from a randomly connected recurrent
network. The collapse index (Cl), which quantifies the level of scale-invariance in the eigenspectrum (see
Methods), is: (G) Cl = 0.214; (H) Cl = 0.222; (I) Cl = 0.139.
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described by kernel function f(X, - X;) > 0 with f(0) = 1, indicating closer neurons have stronger
correlations, and decreases as distance ||X; - X,|| increases (Figure 3A and Methods). To model the
covariance, we extend the ERM by incorporating heterogeneity of neuron activity levels (shown as
the size of the neuron in the functional space in Figure 3A)

C,=00,fF %), ij=12..,N. )

The variance of neural activity ¢? is drawn i.i.d. from a given distribution and is independent of
neurons’ position.

This multidimensional functional space may represent attributes to which neurons are tuned, such
as sensory features (e.g., visual orientation Hubel and Wiesel (1959), auditory frequency) and move-
ment characteristics (e.g., direction, speed Stefanini et al. (2020); Kropff et al. (2015)). In sensory
systems, it represents stimuli as neural activity patterns, with proximity indicating similarity in fea-
tures. For motor control, it encodes movement parameters and trajectories. In the hippocampus,
it represents the place field of a place cell, acting as a cognitive map of physical space O’Keefe
(1976); Moser et al. (2008); Tingley and Buzsdki (2018).

Figure 3. ERM model of covariance and its eigenspectrum. A. Schematic of the Euclidean Random Matrix
(ERM) model, which reorganizes neurons (circles) from the anatomical space to the functional space (here

d =2 is a two-dimensional box). The correlation between a pair of neurons decreases with their distance in
the functional space according to a kernel function f(x). This correlation is then scaled by neurons' variance
0".2 (circle size) to obtain the covariance C;;. B. An example ERM correlation matrix (i.e., when al? =1).C.
Spectrum (same as Figure 2F) for the ERM correlation matrix in B. The gray dots represent the sorted
variances C;; of all neurons (same as in Figure 2F). D. Visualizing the distribution of the same ERM eigenvalues
in C by plotting the probability density function (pdf).

We first explore the ERM with various forms of f(X) and find that fast-decaying functions like
Gaussian and exponential functions do not produce eigenspectra similar to the data and no scale
invariance over random sampling (Appendix 1—figure 4A-H and Appendix 2). Thus, we turn to slow-
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decaying functions including the power law, which produce spectra similar to the data (Figure 3C,D;
see also Appendix 1—figure 5). We adopt a particular kernel function because of its closed-form
and analytical properties: f(X) = e*(e? + ||X||*)~*/? (Methods). For large distance ||X|| > e, it ap-
proximates a power law f(X) ~ e*||X||™* and smoothly transitions at small distance to satisfy the
correlation requirement f(0) = 1 (Appendix T—figure 71, J).

Analytical theory on the conditions of scale invariance in ERM

To determine the conditions for scale invariance in ERM, we analytically calculate the eigenspec-
trum of covariance matrix C (eq. (2)) for large N, L using the replica method Mézard et al. (1999).
A key order parameter emerging from this calculation is the neuron density p := N/L‘. In the
high-density regime pe? ~ 1, the covariance spectrum can be approximated in a closed form (Meth-
ods). For the slow-decaying kernel function f(x) defined above, the spectrum for large eigenvalues
follows a power law (Appendix 2):

A~ (r/N) i pi,
. M _2d-p (3)
and equivalently p(1) ~ pa# A~ @,

where r is the rank of the eigenvalues in descending order and p(4) is their probability density func-
tion. Equation (3) intuitively explains the scale invariance over random sampling. Sampling in the
ERM reduces the neuron density p. The eigenspectrum is p-independent whenever u/d ~ 0. This
indicates two factors contributing to the scale invariance of the eigenspectrum. First, a small ex-
ponent y in the kernel function f(¥) means that pairwise correlations slowly decay with functional
distance and can be significantly positive across various functional modules and throughout the
brain. For a given p, an increase in dimension d improves the scale invariance. The dimension d
could represent the number of independent features or latent variables describing neural activity
or cognitive states.

We verify our theoretical predictions by comparing sampled eigenspectra in finite-size simulated
ERMs across different p and d (Figure 4A). We first consider the case of homogeneous neurons
(al.2 = 1in eq. (2), revisited later) in these simulations (Figure 3C, D and Figure 4A), making C's en-
tries correlation coefficients. To quantitatively assess the level of scale invariance, we introduce
a collapse index (Cl, see Methods for a detailed definition). Motivated by eq. (3), the Cl measures
the shift of the eigenspectrum when the number of sampled neurons changes. The smaller Cl val-
ues indicate higher scale invariance. Intuitively, it is defined as the area between spectrum curves
from different sample sizes (Figure 4A upper right). In the log-log scale rank plot, eq. (3) shows the
spectrum shifts vertically with p. Thus, we define Cl as this average displacement (Figure 4A upper
right, Methods), and a smaller Cl means more scale-invariant. Using Cl, Figure 4A shows that scale
invariance improves with slower correlation decay as u decreases and the functional dimension d
increases. Conversely, with large u and small d, the covariance eigenspectrum varies significantly
with scale (Figure 4A).

Next, we consider the general case of unequal neural activity levels o> and check for differences
between the correlation (equivalent to ¢? = 1) and covariance matrix spectra. Using the collapsed
index (Cl), we compare the scale invariance of the two spectra in the experimental data. Intriguingly,
the Cl of the covariance matrix is consistently smaller (more scale-invariant) across all datasets (Fig-
ure 4C, Appendix 1—figure 6C, open vs. closed squares), indicating that the heterogeneity of neu-
ronal activity variances significantly affects the eigenspectrum and the geometry of neural activity
space Tian et al. (2024). By extending our spectrum calculation to the intermediate density regime
pe? < 1 (Methods), we show that the ERM model can quantitatively explain the improved scale
invariance in the covariance matrix compared to the correlation matrix (Appendix 1—figure 6B).
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Figure 4. Three factors contributing to scale invariance. A. Impact of 4 and d (see text) on the scale
invariance of ERM spectrum (same plots as Figure 3C) with f(%) = e#(¢? + ||%||2)~#/2. The degree of scale
invariance is quantified by the collapse index (Cl), which essentially measures the area between different
spectrum curves (upper right inset). For comparison, we fix the same coordinate range across panels hence
some plots are cropped. The gray dots represent the sorted variances C;; of all neurons (same as in Figure 2F).
B. Top: sampled correlation matrix spectrum in an example animal (fish 1). Bottom: Same as top but for the
covariance matrix that incorporates heterogeneous variances. The gray dots represent the sorted variances
C;; of all neurons (same as in Figure 2F). C. The Cl of the correlation matrix (filled squares) is found to be
larger than that for the covariance matrix (opened squares) across different datasets: f1 to f6: six light-field
zebrafish data (10 Hz per volume, this paper); fl: light-sheet zebrafish data (2 Hz per volume, Chen et al.
(2018)); mn: mouse Neuropixels data (downsampled to 10 Hz per volume); mp: mouse two-photon data, (3 Hz
per volume, Stringer et al. (2019b)).
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Lastly, we examine factors that turn out to have minimal impact on the scale invariance of the
covariance spectrum. First, the shape of the kernel function f(X) over a small distance (small dis-
tance means f(x) near x = 0 in the functional space, Appendix 1—figure 7) does not affect the distri-
bution of large eigenvalues (Appendix 1—figure 7, table 3, Appendix 1—figure 9A). This supports
our use of a specific f(X) to represent a class of slow-decaying kernels. Second, altering the spatial
distribution of neurons in the functional space, whether using a Gaussian, uniform, or clustered
distribution, does not affect large covariance eigenvalues, except possibly the leading ones (Ap-
pendix 1—figure 9B, Methods). Third, different geometries of the functional space, such as a flat
square, a sphere, or a hemisphere, result in eigenspectra similar to the original ERM model (Ap-
pendix 1—figure 9C). These findings indicate that our theory for the covariance spectrum'’s scale
invariance is robust to various modeling details.

Connection among random sampling, functional sampling, and anatomical sam-
pling

So far, we have focused on random sampling of neurons, but how does the neural activity space
change with different sampling methods? To this end, we consider three methods (Figure 5A1): ran-
dom sampling (RSap), anatomical sampling (ASap) where neurons in a brain region are captured
by optical imaging Grewe and Helmchen (2009); Gauthier and Tank (2018); Stringer et al. (2019a),
and functional sampling (FSap) where neurons are selected based on activity similarity Meshu-
lam et al. (2019). In ASap or FSap, sampling involves expanding regions of interest in anatomical
space or functional space while measuring all neural activity within those regions (Methods). The
difference among sampling methods depends on the neuron organization throughout the brain.
If anatomically localized neurons also cluster functionally (Figure 5A4), ASap ~ FSap; if they are
spread in the functional space (Figure 5A2), ASap ~ RSap. Generally, the anatomical-functional re-
lationship is in-between and can be quantified using the Canonical Correlation Analysis (CCA). This
technique finds axes (CCA vectors o, and &) in anatomical and functional spaces such that the
neurons' projection along these axes has the maximum correlation, Rqc,. The extreme scenarios
described above correspond to Recp =1 and Recp = 0.

To determine the anatomical-functional relationship in neural data, we infer the functional coor-
dinates X, of each neuron by fitting the ERM using multidimensional scaling (MDS) Cox and Cox
(2000) (Methods). For simplicity and better visualization, we use a low-dimensional functional space
where d = 2. The fitted functional coordinates confirm the slow decay kernel function in ERM ex-
cept for a small distance (Appendix 1—figure 12). The ERM with inferred coordinates X, also re-
produces the experimental covariance matrix, including cluster structures (Appendix 1—figure 11)
and its sampling eigenspectra (Appendix 1—figure 10).

Equipped with the functional and anatomical coordinates, we next use CCA to determine which
scenarios illustrated in Figure 5A align better with the neural data. Figure 5B,C shows a representa-
tive fish with a significant Rcc, = 0.327 (p-value=0.0042, Anderson-Darling test). Notably, the CCA
vector in the anatomical space, 7,,,, aligns with the rostrocaudal axis. Coloring each neuron in
the functional space by its projection along o,,,. sShows a correspondence between clustering and
anatomical coordinates (Figure 5B). Similarly, coloring neurons in the anatomical space (Figure 5C)
by their projection along 7, reveals distinct localizations in regions like the forebrain and optic
tectum. Across animals, functionally clustered neurons show anatomical segregation Chen et al.
(2018), with an average R of 0.335+0.054 (mean+SD).

Next, we investigate the effects of different sampling methods (Figure 5A1) on the geometry of the
neural activity space when there is a significant but moderate anatomical-functional correlation as
in the experimental data. Interestingly, dimensionality Dﬁgap in data under anatomical sampling
consistently falls between random and functional sampling values (Figure 5D). This phenomenon
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Figure 5. The relationship between the functional and anatomical space and theoretical predictions.
A. Three sampling methods (A1) and Rccp (see text). When Rccp = 0 (A2), the anatomical sampling (ASap)
resembles the random sampling (RSap), and while when R¢ca = 1 (A4), ASap is similar to the functional
sampling (FSap). B. Distribution of neurons in the functional space inferred by MDS. Each neuron is
color-coded by its projection along the first canonical direction o, in the anatomical space (see text). Data
based on fish 6, same for C to E. C. Similar to B. but plotting neurons in the anatomical space with color based
on their projection along &g, in the functional space (see text). D. Dimensionality (Dpg) across sampling
methods: average Dpr under RSap (circles), average and individual brain region Dpg under ASap (squares and
dots), and Dpg under FSap for the most correlated neuron cluster (triangles; Methods). Dashed and solid lines
are theoretical predictions for Dpg under RSap and FSap, respectively (Methods). E. The Cl of correlation
matrices under three sampling methods in 6 animals (colors). **p<0.01; ***p<0.001; one-sided paired t tests:
RSap vs. ASap, p = 0.0010; RSap vs. FSap, p = 0.0004; ASap vs. FSap, p = 0.0014.
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can be intuitively explained by the ERM theory. Recall that for large N, the key term in eq. (1) is
E,.#(ij). For a fixed number of sampled neurons, this average squared covariance is maximized
when neurons are selected closely in the functional space (FSap) and minimized when distributed
randomly (RSap). Thus, RSap and FSap Dy set the upper and lower bounds of dimensionality, with
ASap expected to fall in between. This reasoning can be precisely formulated to obtain quantitative
predictions of the bounds (Methods). We predict the ASap dimension at large N as

DX &~ (1 - R +K*R?

/d
PR~ ASap ASap)M Dpg. (4)

Here Dgg is the dimensionality under RSap (eq. (1)), k represents the fraction of sampled neurons.
Ryssp is the correlation between anatomical and functional coordinates along the direction where
the anatomical subregions are divided (Methods), and it is bounded by the canonical correlation
Rpsap < Reca- When Ryg,, = 0, we get the upper bound D} = Deg (Figure 5D dashed line). The
lower bound is reached when Rys., = Rcca = 1 (Figure 5A4), where eq. (4) shows a scaling relation-
ship D>" = D% ~ K2/ Dy that depends on the sampling fraction k (Figure 5D solid line). This
contrasts with the k-independent dimensionality of RSap in eq. (1). Furthermore, if Rys,, and its
upper bound is not close to 1 (precisely Rys,, < 0.84 for the ERM model in Figure 5D), Dﬁ:ap align
closer to the upper bound of RSap. This prediction agrees well with our observations in data across

animals (Figure 5D, Appendix 1—figure 20 and Appendix 1—figure 21).

Beyond dimensionality, our theory predicts the difference in the covariance spectrum between
sampling methods based on the neuronal density p in the functional space (eq. (3)). This density p
remains constant during FSap (Figure 5A1) and decreases under RSap; the average density across
anatomical regions {p) in ASap lies between those of FSap and RSap. Analogous to eq. (4), the rela-
tionship in p orders the spectra: ASap's spectrum lies between those of FSap and RSap (Methods).
This further implies that the level of scale invariance under ASap should fall between that of RSap
and FSap, which is confirmed by our experimental data (Figure 5E).

Discussion

Impact of hunting behavior on scale invariance and functional space organization
How does task-related neural activity shape the covariance spectrum and brain-wide functional
organization? We examine the hunting behavior in larval zebrafish, marked by eye convergence
(both eyes move inward to focus on the central visual field) Bianco et al. (2011). We find that scale
invariance of the eigenspectra persists and is enhanced even after removing the hunting frames
from the Ca®* imaging data (Figure 4C, Appendix 1—figure 15AB, Methods). This is consistent with
the scale-invariant spectrum found in other data sets during spontaneous behaviors (Appendix 1—
figure 10F, Appendix 1—figure 2GH), suggesting scale invariance is a general phenomenon.

Interestingly, in the inferred functional space, we observe reorganizations of neurons after remov-
ing hunting behavior (Appendix 1—figure 15C, D). Neurons in one cluster disperse from their cen-
ter of mass (Appendix 1—figure 15D) and decreases the local neuronal density p (Methods and
Appendix 1—figure 15E). The neurons in this dispersed cluster have a consistent anatomical dis-
tribution from the midbrain to the hindbrain in 4 out of 5 fish (Appendix 1—figure 17). During
hunting, the cluster has robust activations that are widespread in the anatomical space but local-
ized in the functional space(Appendix 3).

Our findings suggest that the functional space could be defined by latent variables that represent
cognitive factors such as decision-making, memory, and attention. These variables set the space’s
dimensions, with neural activity patterns reflecting cognitive state dynamics. Functionally related
neurons - through sensory tuning, movement parameters, internal conditions, or cognitive factors
- become closer in this space, leading to stronger activity correlations.
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Criticality and power law

What drives brain dynamics with a slow-decaying distance-correlation function f(X) in functional
space? Long-range connections and a slow decline in projection strength over distance Kunst et al.
(2079) may cause extensive correlations, enhancing global activity patterns. This behavior is also
reminiscent of phase transitions in statistical mechanics Kardar (2007), where local interactions
lead to expansive correlated behaviors. Studies suggest that critical brains optimize information
processing Beggs and Plenz (2003); Dahmen et al. (2019). The link between neural correlation struc-
tures and neuronal connectivity topology is an exciting area for future exploration.

In the high-density regime of the ERM model, the rank plot (eq. (3)) for large eigenvalues (4 > 1)
follows a power law A ~ r=*, with @ = 1 — u/d < 1. The scale invariant spectrum occurs when «
is close to 1. Experimental data, however, align more closely with the model in the intermediate-
density regime, where the power-law spectrum is an approximation and the decay is slower (for
ERM model Appendix 1—figure 3BC, and for data a = 0.47 + 0.08, mean=+SD, n = 6 fish). Stringer
et al. (2019a) found an a > 1 decay in the mouse visual cortex’s stimulus trial averaged covariance
spectrum, and they argued that this decay optimizes visual code efficiency and smoothness. Our
study differs in two fundamental ways. First, we recorded brain-wide activity during spontaneous
or hunting behavior, calculating neural covariance from single-trial activity. Much of the neural
activity was not driven by sensory stimulus and unrelated to specific tasks, requiring a different in-
terpretation of the neural covariance spectrum. Second, without loss of generality, we normalized
the mean variance of neural activity E(c?) by scaling the covariance matrix so that its eigenvalues
sum up to N. This normalization imposes a constraint on the spectrum. In particular, large and
small eigenvalues may have different behaviors and do not need to obey a single power law A ~ r=*
for all N eigenvalues Pospisil and Pillow (2024) (Methods). Stringer et al. (2019a) did not take this
possibility into account, making their theory less applicable to our analysis.

We draw inspiration from the renormalization group (RG) approach to navigate neural covariance
across scales, which has also been explored in the recent literature. Following Kadanoff's block spin
transformation Kardar (2007), Meshulam et al. (2019) formed size-dependent neuron clusters and
their covariance matrices by iteratively pairing the most correlated neurons and placing them ad-
jacent on a lattice. The groups expanded until the largest reached the system size. The RG process,
akin to spatial sampling in functional space (FSap), maintains constant neuron density p. Thus, for
any kernel function f (), including the power law and exponential, the covariance eigenspectrum
remains invariant across scales (Appendix 1—figure 19A,B,D,E).

Morrell et al. (2021, 2024) proposed a simple model in which a few time-varying latent factors
impact the whole neural population. We evaluated if this model could account for the scale invari-
ance seen in our data. Simulations showed that the resulting eigenspectra differed considerably
from our findings (Appendix 1—figure 23). Although the Morrell model demonstrated a degree of
scale invariance under functional sampling (or RG), it did not align with the scale-invariant features
under random sampling, suggesting that this simple model might not capture all crucial features
in our observations.

We emphasize that the covariance spectrum being a power law is distinct from the scale invariance
we define in this study, namely the collapse of spectrum curves under random neuron sampling.
The random RNN model in Figure 2| shows a power-law behavior, but lacks true scale invariance
as spectrum curves for different sizes do not collapse. When connection strength g approaches

r

3
1, the system exhibits a power law spectrum of 1 « (;) *. Subsampling causes the spectrum to

olw

shift by 4 « k3 <L>7 , where k = N,/N is the sampling fraction (derived from Eq. 24 in Hu and

N
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Sompolinsky (2022)).

Bounded dimensionality under random sampling

The saturation of the dimensionality Dy at large sample sizes indicates a limit to neural assembly
complexity, evidenced by the finite mean square covariance. This is in contrast with neural dy-
namics models such as the balanced excitatory-inhibitory (E-I) neural network Renart et al. (2010),
where E#J.(ij) ~ 1/N resulting in an unbounded dimensionality (see Appendix 2). Our results sug-
gest that the brain encodes experiences, sensations, and thoughts using a finite set of dimensions
instead of an infinitely complex neural activity space.

We found that the relationship between dimensionality and the number of recorded neurons de-
pends on the sampling method. For functional sampling, the dimensionality scales with the sam-
pling fraction k: DFF,‘?” ~ k*/4 Dpe. This suggests that if anatomically sampled neurons are func-
tionally clustered, as with cortical neurons forming functional maps, the increase in dimensionality
with neuron number may seem unbounded. This offers new insights for interpreting large-scale

neural activity data recorded under various techniques.

Manley et al. (2024) found that, unlike in our study, neural activity dimensionality in head-fixed,
spontaneously behaving mice did not saturate. They used shared variance component analysis
(SVCA) and noted that PCA-based estimates often show dimensionality saturation, which is consis-
tent with our findings. We intentionally chose PCA in our study for several reasons. First, PCAis a
trusted and widely used method in neuroscience, proven to uncover meaningful patterns in neural
data. Second, its mathematical properties are well understood, making it particularly suitable for
our theoretical analysis. Although newer methods such as SVCA might offer valuable insights, we
believe PCA remains the most appropriate method for our research questions.

It's important to note that the scale invariance of dimensionality and covariance spectrum are dis-
tinct phenomena with different underlying requirements. Dimensionality invariance relies on finite
mean square covariance, causing saturation at large sample sizes. In contrast, spectral invariance
requires a slow-decaying correlation kernel (small 1) and/or a high-dimensional functional space
(large d). Although both features appear in our data, they result from distinct mechanisms. A neu-
ral system could show saturating dimensionality without spectral invariance if it has finite mean
square covariance but rapidly decaying correlations with functional distance. Understanding these
requirements clarifies how neural organization affects different scale-invariant properties.

Computational benefits of a scale-invariant covariance spectrum

Our findings are validated across multiple datasets obtained through various recording techniques
and animal models, ranging from single-neuron calcium imaging in larval zebrafish to single-neuron
multi-electrode recordings in the mouse brain (see Appendix 1—figure 2). The conclusion remains
robust when the multi-electrode recording data are reanalyzed under different sampling rates (6
Hz - 24 Hz, Appendix 1—figure 24). We also confirm that substituting a few negative covariances
with zero retains the spectrum of the data covariance matrix (Appendix 1—figure 18 and Methods).

The scale invariance of neural activity across different neuron assembly sizes could support ef-
ficient multiscale information encoding and processing. This indicates that the neural code is
robust and requires minimal adjustments despite changes in population size. One recent study
shows that randomly sampled and coarse-grained macrovoxels can predict population neural ac-
tivity Hoffmann et al. (2023), reinforcing that a random neuron subset may capture overall activity
patterns. This enables downstream circuits to readout and process information through random
projections Gao et al. (2017). A recent study demonstrates that a scale-invariant noise covariance
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spectrum with a specific slope « < 1 enables neurons to convey unlimited stimulus information as
the population size increases Moosavi et al. (2024). The linear Fisher information, in this context,
grows at least as N,

Understanding how dimensionality and spectrum change with sample size also suggests the possi-
bility of extrapolating from small samples to overcome experimental limitations. This is particularly
feasible when p/d — 0, where the dimensionality and spectrum under anatomical, random, and
functional sampling coincide (egs. (3) and (4)). Developing extrapolation methods and exploring
the benefits of scale-invariant neural code are promising future research directions.

Materials and Methods

Key resources table

Reagent type Designation Source or refer- | Identifiers Additional
ence information

strain, strain back- | Tg(elavl3: H2B- | https://doi.org/ Jiu-Lin Du, In-

ground (Danio rerio) | GCaMPé&f) 10.7554 /el ife. stitute of Neu-
12741 roscience, Chi-

nese Academy
of Sciences,

Shanghai
software, algorithm | julial.7 https://julialang.
org/
software, algorithm | MATLAB https://ww2.
mathworks.cn/
software, algorithm | Mathematica https://www.

wolfram.com/
mathematica/

Experimental methods

The handling and care of the zebrafish complied with the guidelines and regulations of the Animal
Resources Center of the University of Science and Technology of China (USTC). All larval zebrafish
(huc:h2b -GCaMP6f Dunn et al. (2016)) were raised in E2 embryo medium (comprising 7.5 mM Nacl,
0.25 mM KCl, 0.5 mM MgS0,, 0.075 mM KH,PO,, 0.025 mM Na,HPO,, 0.5 mM CaCl,, and 0.35 mM
NaHCO;; containing 0.5 mg/L methylene blue) at 28.5 °C and with a 14-h light and 10-h dark cycle.

To induce hunting behavior (composed of motor sequences like eye convergence and J turn) in lar-
val zebrafish, we fed them a large amount of paramecia over a period of 4-5 days post-fertilization
(dpf). The animals were then subjected to a 24-hour starvation period, after which they were trans-
ferred to a specialized experimental chamber. The experimental chamber was 20mm in diameter
and 1Tmm in depth, and the head of each zebrafish was immobilized by applying 2% low melting
point agarose. The careful removal of the agarose from the eyes and tail of the fish ensured that
these body regions remained free to move during hunting behavior. Thus, characteristic behav-
ioral features such as J-turns and eye convergence could be observed and analyzed. Subsequently,
the zebrafish were transferred to an incubator and stayed overnight. At 7 dpf, several paramecia
were introduced in front of the previously immobilized animals, each of which was monitored by
a stereomicroscope. Those displaying binocular convergence were selected for subsequent Ca**
imaging experiments.

We developed a novel optomagnetic system that allows (1) precise control of the trajectory of the
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Notation Description

C covariance matrix, eq. (2)

C,; pairwise covariance between neuron i, j; entries of C

Dpy participation ratio dimension, eq. (5)

DjoeP anatomical sampling dimension, eq. (4)

A eigenvalue of a covariance matrix C

p(A) probability density function of covariance eigenvalues, eq. (8)
r rank of an eigenvalue in descending order, eq. (3)

q fraction of eigenvalues up to Aand ¢ = r/N, eq. (13)

@ =fAI%, - %1) kernel function or distance-correlation function, eq. (11)

fk) Fourier transform of f(%), (k) = Jra F(R)eFHkdI7

u power-law exponent in f(x), eq. (11)

€ resolution parameter in f(X) to smooth the singularity near 0, eq. (11)
N number of neurons

N, the total number of neurons prior to sampling

N/N, the fraction of sampled neurons

L linear box size of the functional space

p density of neurons in the functional space

d dimension of the functional space

a; (1) neural activity of neuron i at time ¢

o? temporal variance of neural activity, eq. (2)

cl collapse index for measuring scale invariance eq. (13)

a power-law coefficient of eigenspectrum in the rank plot, Discuss

X, ¥ neuron i's coordinate in the functional and anatomical space, respectively

Otunc> Uanat the first canonical directions in the functional and anatomical space, respectively
Reca the first canonical correlation

Rasap correlation between anatomical and functional coordinates along ASap direction

Table 1. Table of notations.

paramecium and (2) imaging brain-wide Ca®* activity during the hunting behavior of zebrafish. To
control the movement of the paramecium, we treated these microorganisms with a suspension
of ferric tetroxide for 30 minutes and selected those that responded to its magnetic attraction. A
magnetic paramecium was then placed in front of a selected larva, and its movement was con-
trolled by changing the magnetic field generated by Helmholtz coils that were integrated into the
imaging system. The real-time position of the paramecium, captured by an infrared camera, was
identified by online image processing. The positional vector relative to a predetermined target
position was calculated. The magnitude and direction of the current in the Helmholtz coils were
adjusted accordingly, allowing for precise control of the magnetic field and hence the movement
of the paramecium. Multiple target positions could be set to drive the paramecium back and forth
between multiple locations.

The experimental setup consisted of head-fixed larval zebrafish undergoing two different types of
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behavior: induced hunting behavior by a moving paramecium in front of a fish (fish 1-5), and spon-
taneous behavior without any visual stimulus as a control (fish 6). Experiments were carried out at
ambient temperature (ranging from 23°C to 25°C). The behavior of the zebrafish was monitored by
a high-speed infrared camera (Basler acA2000-165umNIR, 0.66x) behind a 4F optical system and
recorded at 50 Hz. Brain-wide Ca*" imaging was achieved using XLFM. Light-field images were ac-
quired at 10 Hz, using customized LabVIEW software (National Instruments, USA) or Solis software
(Oxford Instruments, UK), with the help of a high-speed data acquisition card (PCle-6321, National
Instruments, USA) to synchronize the fluorescence with behavioral imaging.

Behavior analysis

The background of each behavior video was removed using the clone stamp tool in Adobe Pho-
toshop CS6. Individual images were then processed by an adaptive thresholding algorithm, and
fish head and yolk were selected manually to determine the head orientation. The entire body
centerline, extending from head to tail, was divided into 20 segments. The amplitude of a bending
segment was defined as the angle between the segment and the head orientation. To identify the
paramecium in a noisy environment, we subtracted a background image, averaged over a time
window of 100 s, from all the frames. The major axis of the left or right eye was identified using
DeepLabCut Mathis et al. (2018). The eye orientation was defined as the angle between the rostro-
caudal axis and the major axis of an eye; The convergence angle was defined as the angle between
the major axes of the left and right eyes. An eye-convergence event was defined as a period of time
where the angle between the long axis of the eyes stayed above 50 degrees Bianco et al. (2011).

Imaging data acquisition and processing

We used a fast eXtended light field microscope (XLFM, with a volume rate of 10 Hz) to record ca**
activity throughout the brain of head-fixed larval zebrafish. Fish were ordered by the dates of exper-
iments. As previously described Cong et al. (2017), we adopted the Richardson-Lucy deconvolution
method to iteratively reconstruct 3D fluorescence stacks (600 x 600 x 250) from the acquired 2D
images (2048 x 2048). This algorithm requires an experimentally measured point spread function
(PSF) of the XLFM system. The entire recording for each fish is 15.3+4.3 min (mean+SD).

To perform image registration and segmentation, we first cropped and resized the original im-
age stack to 400 x 308 x 210, which corresponded to the size of a standard zebrafish brain (zbb)
atlas Tabor et al. (2019). This step aimed to reduce substantial memory requirements and com-
putational costs in subsequent operations. Next, we picked a typical volume frame and aligned it
with the zbb atlas using a basic 3D affine transformation. This transformed frame was used as a
template. We aligned each volume with the template using rigid 3D intensity-based registration
Studholme et al. (1997) and non-rigid pairwise registration Rueckert et al. (1999) in the Computa-
tional Morphometry Toolkit (CMTK) (https://www.nitrc.org/projects/cmtk/). After voxel registration,
we computed the pairwise correlation between nearby voxel intensities and performed the water-
shed algorithm on the correlation map to cluster and segment voxels into consistent ROIs across
all volumes. We defined the diameter of each ROl using the maximum Feret diameter (the longest
distance between any two voxels within a single ROI).

Finally, we adopted the "OASIS" deconvolution method to denoise and infer neural activity from
the fluorescence time sequence Friedrich et al. (2017). The deconvolved AF/F of each ROl was
used to infer firing rates for subsequent analysis.

Other experimental datasets analyzed

To validate our findings across different recording methods and animal models, we also analyzed
three additional datasets. We include a brief description below for completeness. Further details
can be found in the respective reference. The first dataset includes whole-brain light-sheet Ca®*
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Dataset Data Reference

Light-sheet imaging of larval zebrafish | https://janelia.figshare.com/articles/dataset/

Chen et al. (2018) Whole-brain light-sheet imaging data/7272617

Neuropixels recordings in mice Stringer | https://janelia.figshare.com/articles/dataset/Eight-probe

et al. (2019b) Neuropixels _recordings _during _spontaneous_behaviors/
7739750

Two-photon imaging in mice Stringer | https://janelia.figshare.com/articles/dataset/Recordings

et al. (2019b) of ten thousand neurons_in_visual cortex during
spontaneous behaviors/6163622

Table 2. Resources for additional experimental datasets

imaging of immobilized larval zebrafish in the presence of visual stimuli as well as in a spontaneous
state Chen et al. (2018). Each volume of the brain was scanned through 2.11+0.21 planes per sec,
providing a near-simultaneous readout of neuronal Ca** signals. We analyzed fish 8 (69,207 neu-
rons x 7,890 frames), 9 (79,704 neurons x 7,720 frames) and 11 (101,729 neurons x 8,528 frames),
which are the first three fish data with more than 7,200 frames. For simplicity, we labeled them
12, 13, and 11(fl). The second dataset consists of Neuropixels recordings from approximately ten
different brain areas in mice during spontaneous behavior Stringer et al. (2019b). Data from the
three mice, Kerbs, Robbins, and Waksman, include the firing rate matrices of 1,462 neurons x 39,053
frames, 2,296 neurons x 66,409 frames, and 2,688 neurons x 74,368 frames, respectively. The last
dataset comprises two-photon Ca?* imaging data (2-3 Hz) obtained from the visual cortex of mice
during spontaneous behavior. While this dataset includes numerous animals, we focused on the
first three animals that exhibited spontaneous behavior:spont _M150824_MP019_2016-04-05 (11,983
neurons x 21,055 frames), spont_M160825_MP027_2016-12-12 (11,624 neurons x 23,259 frames),
and spont_M160907_MP028_2016-09-26 (9,392 neurons x 10,301 frames) Stringer et al. (2019b).

Covariance matrix, eigenspectrum and sampling procedures

To begin, we multiplied the inferred firing rate of each neuron (see Methods) by a constant such
that in the resulting activity trace a;, the mean of a,(r) over the nonzero time frames equaled one
Meshulam et al. (2019). Consistent with the literature Meshulam et al. (2019), this step aimed to
eliminate possible confounding factors in the raw activity traces, such as the heterogeneous ex-
pression level of the fluorescence protein within neurons and the non-linear conversion of the
electrical signal to Ca** concentration. Note that after this scaling, neurons could still have differ-
ent activity levels characterized by the variance of 4,(r) over time, due to differences in the sparsity
of activity (proportion of nonzero frames) and the distribution of nonzero g,(¢) values. Without nor-
malization, the covariance matrix becomes nearly diagonal, causing significant underestimation of
the covariance structures.

The three models of covariance in Figure 2G-I were constructed as follows. For model in Figure 2G,
the entries of matrix G (with dimensions N x T) were sampled from an i.i.d. Gaussian distribution
with zero mean and standard deviation ¢ = 1. In Figure 2H, we constructed the composite co-
variance matrix for fish 1 achieved by maintaining the eigenvalues from the fish 1 data covariance
matrix and replacing the eigenvectors U with a set of random orthonormal basis. Lastly, the covari-
ance matrix in Figure 21 was generated from a randomly connected recurrent network of linear rate
neurons. The entries in the synaptic weight matrix are normally distributed with J;; ~ N'(0,¢?/N),
with a coupling strength g = 0.95 Hu and Sompolinsky (2022); Morales et al. (2023). For consistency,
we used the same number of time frames T = 7,200 when comparing Cl across all the datasets
(Figure 4BC, Figure 5DE, Appendix 1—figure 6C). For other cases, we analyzed the full length of the
data (number of time frames: fish 1 - 7495, fish 2 - 9774, fish 3 - 13904, fish 4 - 7318, fish 5 - 7200,
fish 6 - 9388). Next, the covariance matrix was calculated as C;; = == ¥ (a,() - a,) (a;(1) - a,),

=
where g, is the mean of 4,(r) over time. Finally, to visualize covariance matrices on a common scale,

17 of 92


https://janelia.figshare.com/articles/dataset/Whole-brain_light-sheet_imaging_data/7272617
https://janelia.figshare.com/articles/dataset/Whole-brain_light-sheet_imaging_data/7272617
https://janelia.figshare.com/articles/dataset/Eight-probe_Neuropixels_recordings_during_spontaneous_behaviors/7739750
https://janelia.figshare.com/articles/dataset/Eight-probe_Neuropixels_recordings_during_spontaneous_behaviors/7739750
https://janelia.figshare.com/articles/dataset/Eight-probe_Neuropixels_recordings_during_spontaneous_behaviors/7739750
https://janelia.figshare.com/articles/dataset/Recordings_of_ten_thousand_neurons_in_visual_cortex_during_spontaneous_behaviors/6163622
https://janelia.figshare.com/articles/dataset/Recordings_of_ten_thousand_neurons_in_visual_cortex_during_spontaneous_behaviors/6163622
https://janelia.figshare.com/articles/dataset/Recordings_of_ten_thousand_neurons_in_visual_cortex_during_spontaneous_behaviors/6163622

529

530

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

we multiplied matrix C by a constant such that the average of its diagonal entries equaled one, that
is, Tr(C)/N = 1. This scaling did not alter the shape of covariance eigenvalue distribution, but set
the mean at 1 (see also eq. (8)).

To maintain consistency across data sets, we fixed the same initial number of neurons at N, = 1, 024.
These N, neurons were randomly chosen once for each zebrafish dataset and then used through-
out the subsequent analyses. We adopted this setting for all analyses except in two particular
instances: (1) for comparisons among the three sampling methods (RSap, ASap, and FSap), we
specifically chose 1,024 neurons centered along the anterior-posterior axis, mainly from the mid-
brain to the anterior hindbrain regions (Figure 5DE, Appendix 1—figure 20). (2) When investigating
the impact of hunting behavior on scale invariance, we included the entire neuronal population
(Methods).

We used an iterative procedure to sample the covariance matrix C (calculated from data or as
simulated ERMs). For RSap, in the first iteration, we randomly selected half of the neurons. The
covariance matrix for these selected neurons was a N /2 x N /2 diagonal block of C. Similarly, the
covariance matrix of the unselected neurons was another diagonal block of the same size. In the
next iteration, we similarly created two new sampled blocks with half the number of neurons for
each of the blocks we had. Repeating this process for n iterations resulted in 2" blocks, each con-
taining N := N,/2" neurons. At each iteration, the eigenvalues of each block were calculated and
averaged across the blocks after being sorted in descending order. Finally, the averaged eigenval-
ues were plotted against rank/N on a log-log scale.

In the case of ASap and FSap, the process of selecting neurons was different, although the re-
maining procedures followed the RSap protocol. In ASap, the selection of neurons was based on
a spatial criterion: neurons close to the anterior end on the anterior-posterior axis were grouped
to create a diagonal block of size % X % with the remaining neurons forming a separate block.
FSap, on the other hand, used the Renormalization Group (RG) framework Meshulam et al. (2019)
to define the blocks (details in Methods). In each iteration, the cluster of neurons within a block
that showed the highest average correlation (E,.#j(ij)) was identified and labeled as the most cor-
related cluster (refer to Figure 5D, Appendix 1—figure 20 and Appendix 1—figure 21).

In the ERM model, as part of implementing ASap, we generated anatomical and functional coordi-
nates for neurons with a specified CCA properties as described in Methods. Mirroring the approach
taken with our data, ASap segmented neurons into groups based on the first dimension of their
anatomical coordinates, akin to the anterier-posterior axis. FSap employed the same RG proce-
dures outlined earlier (Methods).

To determine the overall power-law coefficient of the eigenspectra, «, throughout sampling, we
fitted a straight line in the log-log rank plot to the large eigenvalues that combined the original and
three iterations of sampled covariance matrices (selecting the top 10% eigenvalues for each matrix
and excluding the first four largest ones for each matrix). We averaged the estimated a over 10 rep-
etitions of the entire sampling procedure. R? of the power-law fit was computed in a similar way.
To visualize the statistical structures of the original and sampled covariance matrices, the orders of
the neurons (i.e. columns and rows) are determined by the following algorithm. We first construct
a symmetric Toeplitz matrix 7, with entries 7,, = ¢, ; and t,_; = ¢, ,. The vector = 1[tgtyr o rty_y]
is equal to the mean covariance vector of each neuron calculated below. Let ¢, be a row vector of
the data covariance matrix; we identify 7 = # Z,’i] D(c;), where D(-) denotes a numerical ordering
operator, namely rearranging the elements in a vector ¢ such that¢, > ¢, > ... > ¢5_,. The second
step is to find a permutation matrix P such that |7 — PCPT||, is minimized, where || || denotes
the Frobenius norm. This quadratic assignment problem is solved by simulated annealing. Note
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that after sampling, the smaller matrix will appear different from the larger one. We need to per-
form the above reordering algorithm for every sampled matrix so that matrices of different sizes
become similar in Figure 2E.

The composite covariance matrix with substituted eigenvectors in (Figure 2H) was created as de-
scribed in the following steps. First, we generated a random orthogonal matrix U, (based on the
Haar measure) for the new eigenvectors. This was achieved by QR decomposition A = U,R of a
random matrix A with i.i.d. entries 4;; ~ N'(0,1/N). The composite covariance matrix C, was then
defined as C, := U,AUT, where A is a diagonal matrix that contains the eigenvalues of C. Note
that since all the eigenvalues are real and U, is orthogonal, the resulting C, is a real and symmetric
matrix. By construction, C, and C have the same eigenvalues, but their sampled eigenspectra can
differ.

Dimensionality

In this section, we introduce the Participation Ratio (Dpg) as a metric for effective dimensionality
of a system, based on Recanatesi et al. (2019); Litwin-Kumar et al. (2017); Gao and Ganguli (2015);
Gao et al. (2017); Clark et al. (2023); Dahmen et al. (2020). D, is defined as:

(Z.4)  arey N?E(6?)?

_ _ 5
Y. 22 Te(C)  NE(@*)+ N(N - DE,;(C2) N

Dpr(C) =

Here, 4, are the eigenvalues of the covariance matrix C, representing variances of neural activ-
ities. Tr(-) denotes the trace of the matrix. The term E,.#(ij) denotes the expected value of the
squared elements that lie off the main diagonal of C. This represents the average squared covari-
ance between the activities of distinct pairs of neurons.

With these definitions, we explore the asymptotic behavior of Dy as the number of neurons N
approaches infinity:

E(O.Z)Z

lim Dpg(C) =
W Dol E(C))

This limit highlights the relationship between the PR dimension and the average squared co-
variance among different pairs of neurons. To predict how D scales with the number of neurons
(Figure 2D), we first estimated these statistical quantities (E,.#(ij), E(c?), and E(c¢*)) using all avail-
able neurons, then applied eq. (5) for different values of N. It is worth mentioning that a similar

theoretical finding is established by Dahmen et al. (2020). The transition from increasing Dy with
N to approaching the saturation point occurs when N is significantly larger than Dpg.

ERM model

We consider the eigenvalue distribution or spectrum of the matrix C at the limit of N > 1 and
L > 1. This spectrum can be analytically calculated in both high-density and intermediate-density
scenarios using the replica method Mézard et al. (1999). The following sketch shows our approach,
and detailed derivations can be found in Appendix 2. To calculate the probability density func-
tion of the eigenvalues (or eigendensity), we first compute the resolvent or Stieltjes transform
g(z) = —%az (ln det(zl — C)‘1/2>, z € C. Here (...) is the average across the realizations of C (that
is, random ;' s and ¢?' s). The relationship between the resolvent and the eigendensity is given by
the Sokhotski-Plemelj formula:

p(A) = _1 lim Im g(A + in), (6)
T n—>0*

where Im means imaginary part.
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Here we follow the field-theoretic approach Mézard et al. (1999), which turns the problem of cal-
culating the resolvent to a calculation of the partition function in statistical physics by using the
replica method. In the limit N — oo, LY — o, p being finite, by performing a leading order ex-
pansion of the canonical partition function at large z (Appendix 2), we find the resolvent is given
by
so=t [ L1 %
) @z — pE() [ (R)

In the high-density regime, the probability density function (pdf) of the covariance eigenvalues can
be approximated and expressed from eqs. (6) and (7) using the Fourier transform of the kernel
function f(k):

-
o) = 1 dik </1

—pfk 8
PE@) Jos 2oy \Een) " )) ’ (®)
where §(x) is the Dirac delta function and E(s?) is the expected value of the variances of neural
activity. Intuitively, eq. (8) means that A/p are distributed with a density proportional to the area of

F(k) level sets (i.e., isosurfaces).

In Results, we found that the covariance matrix consistently shows greater scale invariance com-
pared to the correlation matrix across all datasets. This suggests that the variability in neuronal
activity significantly influences the eigenspectrum. This finding, however, cannot be explained by
the high-density theory, which predicts that the eigenspectrum of the covariance matrix is simply
arescaling of the correlation eigenspectrum by E(s?), the expected value of the variances of neural
activity. Without loss of generality, we can always standardize the fluctuation level of neural activity
by setting E(¢?) = 1. This is equivalent to multiplying the covariance matrix C by a constant such
that Tr(C)/N = 1, which in turn scales all the eigenvalues of C by the same factor. Consequently,
the heterogeneity of 2 has no effect on the scale invariance of the eigenspectrum (see eq. (8)).
This theoretical prediction is indeed correct and is confirmed by direct numerical simulations and
quantifying the scale invariance using the Cl (Appendix 1—figure 6A).

Fortunately, the inconsistency between theory and experimental results can be resolved by fo-
cusing the ERM within the intermediate density regime pe? < 1, where neurons are positioned at
a moderate distance from each other. As mentioned above, we set E(¢?) = 1 in our model and
vary the diversity of activity fluctuations among neurons represented by E(¢*). Consistent with the
experimental observations, we find that the Cl decreases with E(c*) (see Appendix 1—figure 6B).
This agreement indicates that the neural data are better explained by the ERM in the intermediate
density regime.

To gain a deeper understanding of this behavior, we use the Gaussian variational method Mézard
et al. (1999) to calculate the eigenspectrum. Unlike the high-density theory where the eigendensity
has an explicit expression, in the intermediate density the resolvent g(z) no longer has an explicit
expression and is given by the following equation

g<z>=< L— > , 9)
z-02 [Dk G2/,

where (...), computes the expectation value of the term within the bracket with respect to ¢, namely

(..)y = [ ..p(o)do. Here and in the following, we denote [ Dk = [ ((ziifd' The function G(k, z) is
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determined by a self-consistent equation,

2
o1 A A— (10)
j& GGz \z-o0*[DkGk.2)/,

We can solve /D% G(k, z) from eg. (10) numerically and below is an outline, and the details are
explained in Appendix 2. Let us define the integral ¢ = / Dk G(k, z). First, we substitute z = A + in
into eq. (10) and write G = ReG + iImg. eq. (10) can thus be decomposed into its real part and imag-
inary part, and a set of nonlinear and integral equations, each of which involves both ReG and Img.
We solve these equations at the limit  — 0 using a fixed-point iteration that alternates between
updating ReG and Img until convergence.

We find that the variational approximations exhibit excellent agreement with the numerical simula-
tion for both large and intermediate p where the high-density theory starts to deviate significantly
(for p =256 and p = 10.24, € = 0.03125, Appendix 1—figure 3). Note that the departure of the leading
eigenvalues in these plots is expected, since the power-law kernel function we use is not integrable
(see Methods).

To elucidate the connection between the two different methods, we estimate the condition when
the result of the high-density theory (eq. (8)) matches that of the variational method (egs. (9)
and (10)) (Appendix 2). The transition between these two density regimes can also be understood
(see ?? and Appendix 2).

Importantly, the scale invariance of the spectrum at u/d — 0 previously derived using the high-
density result (eq. (3)) can be extended to the intermediate-density regime by proving the p-independence
using the variational method (Appendix 2).

Finally, using the variational method and the integration limit estimated by simulation (see E(c*),
indeed improves the collapse of the eigenspectra for intermediate p (

Kernel function
Throughout the paper, we have mainly considered a particular approximate power-law kernel func-
tion inspired by the Student's t distribution

fG) ="+ X1, an

To understand how to choose ¢ and y, see Methods. Variations of eq. (11) near x = 0 have also
been explored; see a summary in table 3.

It is worth mentioning that a power law is not the only slow decaying function that can pro-
duce a scale-invariant covariance spectrum (Appendix 1—figure 5). We choose it for its analytical
tractability in calculating the eigenspectrum. Importantly, we find numerically that the two con-
tributing factors to scale invariance - namely, slow spatial decay and higher functional space - can
be generalized to other nonpower-law functions. An example is the stretched exponential function
F&) = e IFI" with 0 < # < 1. When 7 is small and 4 is large, the covariance eigenspectra also display
a similar collapse upon random sampling (Appendix 1—figure 5).

This approximate power-law f(X) has the advantage of having an analytical expression for its
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Ji€3) Definition

_ {1, Il < e
Flat f(X) = el

T IX]l > e

- BIXII + 1, Xl < ce, f'(ce) =b
Tangent f(x) = { ] IZ] > ce

[

Tent " -
I Il > ce

@ = {bn?cn +1, |IXll <ce f'(ce) # b

. BIIXN?+1, |IX| < ce, f'(ce) = 2bce
Parabola f(X) = { o IZ] > ce

11>

tpdf fG) = et + |Ix)H) />

Table 3. Modifications of the shape of f(X) near ||X|| = 0 used in Appendix 1—figure 7,

Appendix 1—figure 8 and Appendix 1—figure 9. Flat: when ||X|| < ¢, f(X) = 1. Tangent: when ||X|| < ce, f(X)
follows a tangent line of the exact power law (b||X|| + 1 and ﬁ have a same first-order derivative when

[IX]l = ce). b and ¢ are constants. Tent: when ||X|| < ce, f(¥) follows a straight line while the slope is not the
same as the tangent case. Parabola: when ||X|| < ce, £(%) follows a quadratic function (ax? + 1 and ﬁ have
same first-order derivative). t pdf: mimic the smoothing treatment like the t distribution. All the constant
parameters are set such that £(0) = 1.

Fourier transform, which is crucial for the high-density theory (eq. (8)),

QU2 4 ud st (ko)

77 Pomrkrer Ryoyplke Z

(k) = , k=|k (12)
f TG/2) lIll

Here K,(x) is the modified Bessel function of the second kind, and I'(x) is the Gamma function. We
calculated the above formulas analytically for d = 1,2, 3 with the assistance of Mathematica and
conjectured the case for general dimension d, which we confirmed numerically for d < 10.

We want to explain two technical points relevant to the interpretation of our numerical results and
the choice of f(¥X). Unlike the case in the usual ERM, here we allow f(X) to be non-integrable (over
R%), which is crucial to allow power law f(X). The nonintegrability violates a condition in the classical
convergence results of the ERM spectrum Bordenave (2008) as N — . We believe that this is ex-
actly the reason for the departure of the first few eigenvalues from our theoretical spectrum (e.g., in
Figure 3). Our hypothesis is also supported by ERM simulations with integrable f(X) (Appendix 1—
figure 4), where the numerical eigenspectrum matches closely with our theoretical one, including
the leading eigenvalues. For ERM to be a legitimate model for covariance matrices, we need to en-
sure that the resulting matrix C is positive semidefinite. According to the Bochner theorem Rudin
(7990), this is equivalent to the Fourier transform (FT) of the kernel function f(%) being nonnega-

. 1
1, |f|x| < >

tive for all frequencies. For example, in 1D, a rectangle function rect(x) = does not

0, otherwise

1—|x|, if|x|<1

meet the condition (its FT is sinc(x) = ““—V(")), but a tent function tent(x) = does

0, otherwise

(its FT is sinc*(x)). For the particular kernel function f(%) in eq. (11), this condition can be easily veri-
fied using the analytical expressions of its Fourier transform (eq. (12)). The integral expression for
K, (x), given as K, (x) = /0°° e*coht cosh(ar)dt, shows that K, (x) is positive for all x > 0. Likewise, the
Gamma function I'(x) > 0. Therefore, the Fourier transform of eq. (11) is positive and the resulting
matrix C (of any size and values of X,) is guaranteed to be positive definite.
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Building upon the theory outlined above, numerical simulations further validated the empirical
robustness of our ERM model, as showcased in Figure 3B-D and Figure 4A. In Figure 3B-D, the ERM
was characterized by the parameters N = 1024, d =2, L = 10, p = 10.24 and p = 0.5 and ¢ = 0.03125
for f(¥). To numerically compute the eigenvalue probability density function, we generated the
ERM 100 times, each sampled using the method described in Methods. The probability density
function (pdf) was computed by calculating the pdf of each ERM realization and averaging these
across the instances. The curves in Figure 3D showed the average of over 100 ERM simulations.
The shaded area (most of which is smaller than the marker size) represented the SEM. For Fig-
ure 4A, the columns from left to right were corresponded to x = 0.5, 0.9, 1.3, and the rows from top
to bottom were corresponded to d = 1, 2, 3. Other ERM simulation parameters: N = 4096, p = 256,
L = (N/p)'/4, e = 003125 and ¢ = 1. It should be noted that for Figure 4A, the presented data
pertain to a single ERM realization.

Collapse index (Cl)

We quantify the extent of scale invariance using Cl defined as the area between two spectrum
curves (Figure 4A upper right), providing an intuitive measure of the shift of the eigenspectrum
when varying the number of sampled neurons. We chose the Cl over other measures of distance
between distributions for several reasons. First, it directly quantifies the shift of the eigenspec-
trum, providing a clear and interpretable measure of scale invariance. Second, unlike methods
that rely on estimating the full distribution, the Cl avoids potential inaccuracies in estimating the
probability of the top leading eigenvalues. Finally, the use of Cl is motivated by theoretical consid-
erations, namely the ERM in the high-density regime, which provides an analytical expression for
the covariance spectrum (eq. (3)) valid for large eigenvalues.

log
1 240

dlog Aq)

3oz p log q, (13)

[i=——
log(QO/ql) log q;

we set ¢, such that A(g,) = 1, which is the mean of the eigenvalues of a normalized covariance
matrix. The other integration limit ¢, is set to 0.01 such that A(q,) is the 1% largest eigenvalue.

Here we provide numerical details on calculating Cl for the ERM simulations and experimental
data.

A calculation of collapse index for experimental datasets/ERM model

To calculate Cl for a covariance matrix C of size N, we first computed its eigenvalues 4’ and those
of the sampled block C; of size N, = N,/2, denoted as 4’ (averaged over 20 times for the ERM
simulation and 2000 times in experimental data). Next, we estimated log A(¢) using the eigenvalues
ofCyand C,atq=i/N,,i=1,2,...,N,. Forthe sampled C,, we simply had log A(g = i/N,) = log 4}, its
i-thlargest eigenvalue. For the original C,, log A(g¢ = i/ N,) was estimated by a linear interpolation, on
the log A-log g scale, using the value of log A(g) in the nearest neighboring ¢ = i/ N,'s (which again are
simply log A?). Finally, the integral (eq. (13)) was computed using the trapezoidal rule, discretized at
q=i/N, s, using the finite difference 22449 ~ __1__|Alog A(g)|, where A denotes the difference

dlogp log(Ny/Ny)
between the original eigenvalues of C, and those of sampled C..

Estimating Cl using the variational method
In the definition of Cl (eq. (13), calculating A(q) and 0;%;‘:) directly using the variational method is
difficult, but we can make use of an implicit differentiation

9q(p.A)
dlog A(q, p) _ Eall(%p) _ P9 (14)
dlogp A dp A dae.h)’

dA
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where g(4) := /f p(A)dA is the complementary cdf (the inverse function of A(g) in Methods). Using
this, the integral in Cl (eq. (13)) can be rewritten as

1 %
/"g"“ 010g/1(q,p)' /"° P o
log g dlo q a4 3—3 (15)
2/1(40) _ﬁ@_ﬂ %dj _ //1(41) ldlogq'
ey | 92| 04 sa |4 0logp
Since Z—j = —p(4) < 0, we switch the order of the integration interval in the final expression of

eq. (15).

First, we explain how to compute the complementary cdf g(4) numerically using the variational
method. The key is to integrate the probability density function p(1) from 4 to a finite i(q,) rather
than to infinity,

0 © Algy) Ags)
q(h) = / p(Ada = / p(AdA + / p(AdA =g, + / p(A)dA. (16)
A A(qy) A A

(45

The integration limit A(¢,) cannot be calculated directly using the variational method. We thus used
the value of A°(¢, ~ ¢q,) (Methods) from simulations of the ERM with a large N = 1024 as an approx-
imation. Furthermore, we employed a smoothing technique to reduce bias in the estimation of
A5(g,) due to the leading zigzag eigenvalues (i.e., the largest eigenvalues) of the eigenspectrum.
Specifically, we determined the nearest rank j < Ng, and then smoothed the eigenvalue log 2*(q,)

2
on the log-log scale using the formula log 2°(q,) = % Y log M(’Ni) and logg, = = Z log ’—*' , averaging
i=0

over 100 ERM simulations.

Note that we can alternatively use the high-density theory (Appendix 2) to compute the integra-
tion limit A(g, = 1/N) instead of resorting to simulations. However, since the true value deviates
from the A%(g, = 1/N) derived from high-density theory, this approach introduces a constant bias
(Appendix 1—figure 6) when computing the integral in eq. (16). Therefore we used the simulation
value A*(¢q, ~ q,) when producing Appendix 1—figure 6AB.

Next, we describe how each term within the integral of eq. (15) was numerically estimated. First,
we calculated Z:(‘% with a similar method described in Methods. Briefly, we calculated g,(4) for
o / > [Alog g(4)].
wherei=0,1,2,...,k—1,and we used k = 20.

dlogq

density p, = 7% and q,(4) for density p, = %=, and then used the finite difference

Second, ""’li"“) was evaluated at 4 = A(q, )+ z—‘("‘)) A1)

Finally, we performed a cubic spline |nterpolat|on of the term oe , and obtained the theoretical Cl
by an integration of eq. (15). Appendix 1—figure 6A,B shows a comparison between theoretical Cl
and that obtained by numerical simulations of ERM (Methods).

Fitting ERM to data
Estimating the ERM parameters
Our ERM model has 4 parameters: u and e dictate the kernel function f(x), whereas the box size L
and the embedding dimension d determine the neuronal density p. In the following, we describe an
approximate method to estimate these parameters from pairwise correlations measured experi-
mentally R;; = f_; We proceed by deriving a relationship between the correlation probability den-
sity distributionli{(R) and the pairwise distance probability density distribution g(u) := g(||X, — X,
in the functional space, from which the parameters of the ERM can be estimated.

Consider a distribution of neurons in the functional space with a coordinate distribution p(X).
The pairwise distance density function g(u) is related to the spatial point density by the following
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formula:
aw=/ PGPGBIF, — ,l - u)dF,d5, (17)
[0,L]4

For ease of notation, we subsequently omit the region of integration, which is the same as here.
In the case of a uniform distribution, p(X,) = p(X,) = 1/V = 1/L¢. For other spatial distributions,
eq. (17) cannot be explicitly evaluated. We therefore make a similar approximation by focusing on
a small pairwise distance (i.e., large correlation):

X+ X,

5 ) (18)

p(x) = p(xXy) = p(

By a change of variables:

eq. (17) can be rewritten as

i} i} . (19)
g@z/ﬁwWWPwMﬁ=&Jﬂfﬂmu

where S,_,(u) is the surface area of d — 1 sphere with radius u. Note that the approximation of g(u) is
not normalized to 1, as Eq. (19) provides an approximation valid only for small pairwise distances
(i.e., large correlation). Therefore, we believe this does not pose an issue.

With the approximate power-law kernel function R = f(u) ~ (5)", the probability density function
of pairwise correlation A(R) is given by:

d

du 2r2e? 2, 3D
h(R) = — = X)dX 20
(R) = gw) | T r(i)ﬂRM/M/p() (20)

2
Taking the logarithm on both sides

21t +d

log h(R) = log <ed /p2()?)d)?> + log 7;2 _kre log R 21)
ru K

eq. (21) is the key formula for ERM parameters estimation. In the case of a uniform spatial distri-
bution, e“/pz()?)d)? = ¢?/V = (¢/L)". For a given dimension d, we can therefore estimate x and
(e/ L) separately by fitting A(R) on the log-log scale using the linear least squares. Lastly, we fit the
distribution of ¢ (the diagonal entries of the covariance matrix C) to a log-normal distribution by
estimating the maximum likelihood.

There is a redundancy between the unit of the functional space (using a rescaled ¢; = ¢/68) and
the unit of f(X) (using a rescaled f;(X) = f(¥/4)), thus e and L are a pair of redundant parame-
ters: once ¢ is given, L is also determined. We set ¢ = 0.03125 throughout the article. In summary,
for a given dimension d and ¢, u of f(%) (eq. (11)), the distribution of ¢ and p (or equivalently L)
can be fitted by comparing the distribution of pairwise correlations in experimental data and ERM.
Furthermore, knowing (e/L)? enables us to determine a fundamental dimensionless parameter

pe’ 1= N(e/L)",

which tells us whether the experimental data are better described by the high-density theory or the
Gaussian variational method (Appendix 2). Indeed, the fitted pe? ~ 1073 — 10° is much smaller than
1, consistent with our earlier conclusion that neural data are better described by an ERM model in
the intermediate-density regime.
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Notably, we found that a smaller embedding dimension d < 5 gave a better fit to the overall pair-
wise correlation distribution. The following is an empirical explanation. As d grows, to best fit the
slope of log A(R)—log R, u will also grow. However, for very high dimensions d, the y-intercept would
become very negative, or equivalently, the fitted correlation would become extremely small. This
can be verified by examining the leading order log R independent term in eq. (21), which can be
approximated as dlog% + % logz + 1 —log %) It becomes very negative for large d since e < L
by construction. Throughout this article, we use d = 2 when fitting the experimental data with our
ERM model.

The above calculation can be extended to the cases where the coordinate distribution p(¥) becomes
dependent on other parameters. To estimate the parameters in coordinate distributions that can
generate ERMs with a similar pairwise correlation distribution (Appendix 1—figure 9), we fixed the
integral value fpz(?c)d?c. Consider, for example, a transformation of the uniform coordinate distri-
bution to the normal distribution N (u, = 0, aﬁI) inR2. We imposed /[ p*(X)dx = 1/(47w§) =1/L?. For
the log-normal distribution, a similar calculation led to Lexp(olf/4—;4p) = 2\/7_wp. The numerical val-
ues for these parameters are shown in Methods. However, note that due to the approximation we
used (eq. (18)), our estimate of the ERM parameters becomes less accurate if the density function
p(X) changes rapidly over a short distance in the functional space. More sophisticated methods,
such as grid search, may be needed to tackle such a scenario.

After determining the parameters of the ERM, we first examine the spectrum of the ERM with
uniformly distributed random functional coordinates %, € [0, L]¢ (Appendix 1—figure 10M-R). Sec-
ond, we use f(X) to translate experimental pairwise correlations into pairwise distances for all neu-
rons in the functional space (Appendix 1—figure 11, Appendix 1—figure 10G-L). The embedding
coordinates X, in the functional space can then be solved through Multidimensional Scaling (MDS)
by minimizing the Sammon error (Methods). The similarity between the spectra of the uniformly
distributed coordinates (Appendix 1—figure 10M-R) and those of the embedding coordinates (Ap-
pendix 1—figure 10G-L) is also consistent with the notion that specific coordinate distributions in
the functional space have little impact on the shape of the eigenspectrum (Appendix 1—figure 9).

Nonnegativity of data covariance

To use ERM to model the covariance matrix, the pairwise correlation is given by a non-negative
kernel function f(X) that monotonically decreases with the distance between neurons in the func-
tional space. This nonnegativeness brings about a potential issue when applied to experimental
data, where, in fact, a small fraction of pairwise correlations/covariances are negative. We have
verified that the spectrum of the data covariance matrix (Appendix 1—figure 18) remains virtually
unchanged when replacing these negative covariances with zero (Appendix 1—figure 18). This con-
firms that the ERM remains a good model when the neural dynamics is in a regime where pairwise
covariances are mostly positive Dahmen et al. (2019) (see also Appendix 1—figure 2B, Appendix 1—
figure 2B-D).

Multidimensional Scaling (MDS)

With the estimated ERM parameters (x in f(X) and the box size L for given e and d, see Methods),
we performed MDS to infer neuronal coordinates X%, in functional space. First, we computed a
pairwise correlation R, = :—5’ from the data covariances. Next, we calculated the pairwise distance,
denoted by u;;, by computlirllg the inverse function of f(X) with respect to the absolute value of
R, uj, = f'(IR;]). We used the absolute value |R;;| instead of R;; as a small percentage of R;;
are negative (Appendix 1—figure 2A-D) where the distance is undefined. This substitution by the
absolute value serves as a simple workaround for the issue and is only used here in the analysis
to infer the neuronal coordinates by MDS. Finally, we estimated the embedding coordinates X,

for each neuron by the SMACOF algorithm (Scaling by MAjorizing a COmplicated Function ), which
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minimizes the Sammon error

_ uij)2
J

"
1 (uij
E= Z * z u*
2« s i
i<j

where u;; = ||X; — X, || is the pairwise distance in the embedding space calculated above.

To reduce errors at large distances (i.e., small correlations with R; < f(L), where L is the esti-
mated box size), we performed a soft cut-off at a large distance:

u,*/ = f_l(lR,'jl), Rij 2 f(L)

(23)
u?j = LIOg(f_l(lRijI)/L) +L, Rij < f(LD)

During the optimization process, we started at the embedding coordinates estimated by the clas-
sical MDS Cox and Cox (2000), with an initial sum of squares distance error that can be calculated
directly, and ended with an error or its gradient smaller than 10~*.

The fitted ERM with the embedding coordinates X, reproduced the experimental covariance ma-
trix including the cluster structures (Appendix 1—figure 11) and its sampling eigenspectra (Ap-
pendix T—figure 10).

Canonical-Correlation Analysis (CCA)

Here we briefly explain the CCA method Knapp (1978) for completeness. The basis vectors g,
and 4,,,, in functional and anatomical space, respectively, were found by maximizing the corre-
lation Recp = corr({Tgynce - X, ), {Tanat - ¥:1)- These basis vectors satisfy the condition that the projec-
tions of the neuron coordinates along them, {X,; - Tg,nc} @and {J; - U,,4c}, @re maximally correlated
among all possible choices of o, and 0,,,.. Here {X,}, {§;} represent the coordinates in functional
and anatomical spaces, respectively. The resulting maximum correlation is R.c,. To check the
significance of the canonical correlation, we shuffled the functional space coordinates {X;} across
neurons' identity and re-calculated the canonical correlation with the anatomical coordinates, as
shown in Appendix 1—figure 13.

To study the effect of functional-anatomical relation described by Rcc, in the ERM model, we gen-
erated three dimensional anatomical coordinates {y,} and two dimensional functional coordinates
{x;} for each neuron which are jointly five-dimensional zero-mean multivariate Gaussian random
variables. The coordinates are independent among each other, except for the first dimension {x!}
of the functional coordinates and the first dimension {y!}, which are assigned to have a corre-
lation coefficient equals to Rcc,. The variances of the coordinates are 0'51 = 1,052 = 1,053 =1
and 62, = 2,62, = 1 for the numerics in Appendix 1—figure 21. Under this construction, the first
canonical correlation between the anatomical and functional coordinates equals Rqc,, and the first
canonical direction 7,,,,, in the anatomical space is (1,0,0)” and the first canonical direction g, in

the functional space is (1,0)T.

Extensions of ERM and factors not affecting the scale invariance

In Appendix 1—figure 9 we considered five additional types of spatial density distributions (coordi-
nate distributions) in functional space and two additional functional space geometries. We exam-
ined the points distributed according to the uniform distribution (x ~ 1/L?), the normal distribution
(x ~ N(yp,ajl)), and the log-normal distribution (log X ~ N(yp,a[fl)). We used the method described
in Methods to adjust the parameters of the coordinate distributions based on the uniform distri-
bution case, so that they all generate similar pairwise correlation distributions. The relationships
between these parameters are described in Methods Methods. In Appendix 1—figure 9B, we used
the following parameters: d = 2; L = 10 for the uniform distribution; 4, = 0, o, = 2.82 for the normal
distribution; and H,=2,0,=039 for the log-normal distribution.
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Second, we introduced multiple clusters of neurons in the functional space, with each cluster uni-
formly distributed in a box. We considered three arrangements: (1) two closely situated clusters
(with a box size of L = 51/2, the distance between two cluster centers being L, = L), (2) two dis-
tantly situated clusters (with a box size of L = 54/2 and the distance between clusters L, = 4L), and
three clusters arranged symmetrically in an equilateral triangle (with a box size of L = 10/\/3 and
the distance between clusters L, = L).

Finally, we examined the scenario in which the points were uniformly distributed on the surface of
a sphere (4z1*> = L?, I being the radius of the sphere) or a hemisphere (221> = L?) embedded in R?
(the pairwise distance is that in R3). It should be noted that both cases have the same surface area
as the 2D box.

Analyzing the effects of removing neural activity data during hunting

To identify and remove the time frames corresponding to putative hunting behaviors, the following
procedure was used. The hunting interval was defined as 10 frames (1 sec) preceding the onset
of an eye convergence (see Methods Methods) to 10 frames after the offset of this eye conver-
gence. These frames were then excluded from the data before recalculating the covariance matrix
(see Methods Methods) and subsequently the sampled eigenspectra (Appendix 1—figure 15B, Ap-
pendix T—figure 16B,D,F,H). As a control to the removal of the hunting frame, an equal number of
time frames that are not within those hunting intervals were randomly selected and then removed
and analyzed (Appendix 1—figure 15C, Appendix 1—figure 16A,C,E,G). The number of hunting in-
terval frames and total recording frames for five fish exhibiting hunting behaviors are as follows:
fish 1 - 268/7495, fish 2 - 565/9774, fish 3 - 2734/13904, fish 4 - 843/7318 and fish 5 - 1066/7200.
Fish 6 (number of time frames: 9388) was not exposed to a prey stimulus and, therefore, was ex-
cluded from the analysis.

To assess the impact of hunting removal on Cl, we calculated the Cl of the covariance matrix using
all neurons recorded in each fish (without sampling to 1024 neurons). For the control case, we
repeated the removal of the nonhunting frame 10 times to generate 10 covariance matrices and
computed their Cls. We used a one-sample t-test to determine the level of statistical significance
between the control Cls and the Cl obtained after removal of the hunting frame.

Using fitted ERM parameters by full data, we performed a MDS on the control data and hunting-
removed data to infer the functional coordinates. Note that the functional coordinates inferred
by MDS are not unique: rotations and translations give equivalent solutions. For visualization pur-
poses (not needed for analysis), we first used the Umeyama algorithm to optimally align the func-
tional coordinates of control and hunting-removed data.

To identify distinct clusters within the functional coordinates, we fit Gaussian Mixture Models (GMMs)
using the "GaussianMixtures" package in Julia. We chose the number of clusters K based on giving
the smallest Bayesian Information Criterion (BIC) score. After fitting the GMMs, a list of probabilities
P k=1,2,..., K was given for each neuron i specifying the probability of the neuron belonging to
the cluster k. The mean and covariance parameters were estimated for each Gaussian distributed
cluster. For visualization (but not for analysis), a neuron was colored according to cluster k* where

R
k* = argmax, g Pix-

We used the following method to measure the size of the cluster and its fold change. For a 2D
(recall d = 2 in our ERM) Gaussian distributed cluster, let us consider an ellipse centered on its
mean, and its axes are aligned with the eigenvectors of its covariance matrix C,,,. Let the eigen-
values of C be 4,, 4,. Then we set the length of the half-axis of the ellipse to be ¢4/4;, respectively.
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Here ¢ > 0 is a constant determined below. Note that the ellipse axes correspond to linear combi-

nations of 2D Gaussian random variables that are independent and A,'s are the variance of these

linear combinations. From this fact, it is straightforward to show that the probability that a sample
2

from the Gaussian cluster lies in the above ellipse depends only on ¢, that is, 1—e~ =, and not on the
shape of the cluster. So, the ellipse represents a region that covers a fixed proportion of neurons
for any cluster, and its area can be used as a measure for the size of the Gaussian cluster. Note
that the area of the ellipse is zc?y/4, 4, = z¢?y/det(C). In Appendix 1—figure 17, we plot the ellipses
to help visualize the clusters and their changes. We choose ¢ such that the ellipse covers 95% of
the probability (that is, the fraction of neurons belonging to the cluster).

In the control functional map where we fit the GMMs, we directly calculated the size measure
m:z\/F(C) from the estimated covariance C for each Gaussian cluster. In the hunting-removed
functional map, we needed to estimate the covariance C’ for neurons belonging to a cluster k
under the new coordinates (we assume that the new distribution can still be approximated by a
Gaussian distribution). We performed this estimation in a probabilistic manner to avoid issues of
highly overlapping clusters where the cluster membership could be ambiguous for some neurons.
First, we estimated the center/mean of the new Gaussian distribution by

N N
(%,9) := <2i=1 PuXi 2y pikyi>

Z,’Zl pik 2,111 pik

Here the summation goes over all the N neurons in the functional space and p,, is the membership
probability defined above, and (x;,y,) is the coordinate of neuron i in the hunting-removed map.
Similarly, we can use a weighted average to estimate the entries in the covariance matrix C’ =

c

x| For example,
(j/ !
yx yy

_ Z,‘Z]pik (xi -x) (v _)_’)'

N
Z[:] pik

Then we calculated the size of the cluster on the new map as zc24/det(C"). Finally, we computed

the fold change in size as 4/ (@)
det(C)

Renormalization-Group (RG) Approach

Here we briefly summarize the RG approach used in Meshulam et al. (2019) and elucidate the
adjustments required when applying the RG approach to ERM. The method consists of two stages:
(i) iterative agglomerate clustering of neurons, and (ii) computing the spectrum of a block of the
original covariance matrix corresponding to a cluster of the desired size based on the previous
clustering result.

Al
¢,

Stage (i): Iterative Clustering
We begin with N, neurons, where N, is assumed to be a power of 2. In the first iteration, we
compute Pearson'’s correlation coefficients for all neuron pairs. We then search greedily for the
most correlated pairs and group the half pairs with the highest correlation into the first cluster;
the remaining neurons form the second cluster. For each pair (a, b), we define a coarse-grained
variable according to:

xl',‘ = Z[Il‘b_l(x’;_1 + x';_l), (24)

where Z*-! normalizes the average to ensure unit nonzero activity. This process reduces the num-
ber of neurons to N, = N, /2. In subsequent iterations, we continue grouping the most correlated
pairs of the coarse-grained neurons, iteratively reducing the number of neurons by half at each
step. This process continues until the desired level of coarse-graining is achieved.
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When applying the RG approach to ERM, instead of combining neural activity, we merge correla-
tion matrices to traverse different scales. During the kth iteration, we compute the coarse-grained
covariance as:

k _ k-1 k—1 k—1 k—1
¢ =Chp tC to +oy (25)
and the variance as:
k _ k-1 k—1 k—1
co=c+ey +2c (26)

Following these calculations, we normalize the coarse-grained covariance matrix to ensure that
all variances are equal to one. Note that these coarse-grained covariances are only used in stage
(i) and not used to calculate the spectrum.

Stage (ii): Eigenspectrum Calculation

The calculation of eigenspectra at different scales proceeds through three sequential steps. First,
for each cluster identified in Stage (i), we compute the covariance matrix using the original firing
rates of neurons within that cluster (not the coarse-grained activities). Second, we calculate the
eigenspectrum for each cluster. Finally, we average these eigenspectra across all clusters at a
given iteration level to obtain the representative eigenspectrum for that scale.

In stage (ii), we calculate the eigenspectra of the sub-covariance matrices across different cluster
sizes as described in Meshulam et al. (2019). Let N, = 2" be the original number of neurons. To
reduce it to size N = N,/2* = 2"-*, where k is the kth reduction step, consider the coarse-grained
neurons in step n — k in stage (i). Each coarse-grained neuron is a cluster of 2"=* neurons. We then
calculate spectrum of the block of the original covariance matrix corresponding to neurons of each
cluster (there are 2* such blocks). Lastly, an average of these 2* spectra is computed.

For example, when reducing from N, = 23 = 8to N = 23~! = 4 neurons (k = 1), we would have
two clusters of 4 neurons each. We calculate the eigenspectrum for each 4x4 block of the original
covariance matrix, then average these two spectra together. To better understand this process
through a concrete example, consider a hypothetical scenario where a set of eight neurons, la-
beled 1,2,3,...,7,8, are subjected to a two-step clustering procedure. In the first step, neurons
are grouped based on their maximum correlation pairs, for example, resulting in the formation
of four pairs: {1,2},{3,4}, {5,6}, and {7, 8} (see Appendix 1—figure 22). Subsequently, the neurons
are further grouped into two clusters based on the results of the RG step mentioned above. Specif-
ically, if the correlation between the coarse-grained variables of the pair {1,2} and the pair {3,4} is
found to be the largest among all other pairs of coarse-grained variables, the first group consists
of neurons {1,2,3,4}, while the second group contains neurons {5,6,7,8}. Next, take the size of
the cluster N = 4 for example. The eigenspectra of the covariance matrices of the four neurons
within each cluster are computed. This results in two eigenspectra, one for each cluster. The corre-
lation matrices used to compute the eigenspectra of different sizes do not involve coarse-grained
neurons. It is the real neurons 1,2,3, ..., 7,8, but with expanding cluster sizes. Finally, the average
of the eigenspectra of the two clusters is calculated.

Spectrum of three types of sampling procedures in ERM model

In Result we have considered three types of sampling procedures: random sampling (RSap), spa-
tial sampling in the anatomical space (ASap, e.g., recording neurons in a brain region), and spatial
sampling in the functional space (FSap), namely spatial sampling in functional space by subdividing
the space into smaller regions, is equivalent to the previously reported renormalization group (RG)
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inspired process Bradde and Bialek (2017); Meshulam et al. (2018). Here we consider the relation-
ship between the spectrum of three types of sampling procedures.

We assume a uniform random distribution of neurons in a d-dimensional functional space, [0, L]“.
For RSap procedures, the resulting neuronal density p, is reduced to p, = kp,, with k representing
the sampling ratio (k = N/N,) and p, being the initial density. In contrast, FSap maintains the orig-
inal density, pr = p,. This constancy in neuronal density under FSap ensures that the covariance
eigenspectrum remains invariant across scales for any spatial correlation functions f(x), such as
power law and exponential, as shown in Appendix 1—figure 19A,B,D,E. In contrast, RSap reduces p,
thus demanding more rigorous conditions to achieve a scale-invariant covariance spectrum (e.g.,
compare Appendix 1—figure 19A and C).

Under ASap, sampled neurons are not spread out evenly in functional space, whereas our the-
oretical framework assumes a uniform distribution. To reconcile this discrepancy, we employ a
uniform approximation of the neural distribution. This approach involves introducing an effective
density, p’, defined as the spatial average of the density function p(). This adjustment allows our
theoretical model to accommodate non-uniform distributions encountered in anatomically spatial
sampling.

o = (@) = / PP = kN, / PEE, @)

where p(X) is the normalized density distribution (see Methods Methods).

using the Cauchy-Schwarz inequality, we have

/ pr(X)dx / dx > ( / p(x)dx)? (28)

According to the condition p(X) < % we have p' < p,, intuitively, sampling within a uniformly
distributed neuron population does not increase the density.

thus o’ > kp,.

So we have p, > o/, > kp,, i.e., pp > p/; > pg. Thus the spectrum ASap should be between FSap
and RSap.

Dimensions of three types of sampling procedures in ERM model
Scaling of Dimensions through Random Sampling
Let us revisit the definition of the Participation Ratio (PR) dimension as defined in Equation eq. (5):

(Z.4)  arey NE(e?)?

Der(€) = Y. 2 T(C)  NE(@*)+ NN - DE(C?)

(29)

During the random sampling process, the expected values E(¢?), E(c*), and E,.#(ij) remain con-
stant. These constants allow for the estimation of the PR dimension across various scales using:

RSap _ kJVOE(O'Z)2
PR E(c*) + (kN, = DE,,(C})

(30)

Here, k = N /N, represents a scaling factor (fraction) associated with sampling. The key question
is to understand how the dimensionality changes with k. Under random sampling, as k increases,
the dimensionality will quickly approaches a saturating point defined by eq. (1).
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Scaling of Dimensions through Functional Sampling

In this section, we leverage the uniform ERM model to estimate dimensions within the context of
functional sampling, specifically focusing on the estimation of squared pairwise covariance E,.#(Cf/.)
and dimensionality.

Adopting an approximation for a power-law kernel function f(x) ~ e*||x||™* allows us to express
the expected value of the squared covariance E,.#(ij) as follows:

E,-#(C,-zj) = / ; PEDPE) AR, = X,]DdX, dX,
(0.L]
~ / PEPEIEN T, — Tl 45,5,
(0,14
For a set subjected to functional sampling with a sampling fraction k, this procedure adjusts the

size of the functional space in the ERM model by a factor of k=!/¢. Consequently, the Ef#j(cl?j) for
the sampled fraction k is given by:

B () = A e PP, = ol %,
A L

J
= / P(%1)p(3?2)f2(kl/dl|£1 - J_C)2||)d551‘31552
[0,L14

- - 21 —2uldn= - =24 3= 1=
~ / PEIPE) K Z, — % |25, 05,
[0,L]4

~ k’z“/dE,.#j(ij),

Here we assume that E[¢?] and E[s*] are constant across the sampling process. This model en-
ables the estimation of the ratio u/d as detailed in the Methods Methods.

FSap _, kNOE(GZ)Z

~ 33
PR B(o*) + (kN — Dk=#/4E,;(C%) (33)

Inthe large N limit, we observe distinct behaviors in the evolution of dimensionality in both theory
and data: it saturates in RSap (dashed line in Figure 5D), namely Dszap ~ Dpg defined in eq. (1),

whereas it follows a different scaling relationship DE';"” ~ k*/4 D in FSap (solid line in Figure 5D).

Comparative Analysis of PR Dimension Across sampling Techniques

This section examines the behavior of the Participation Ratio (PR) dimension under three sampling
techniques: anatomical sampling, random sampling, and functional sampling. We show that the
average PR dimension following anatomical sampling occupies a middle ground between the ex-
tremes presented by random and functional sampling.

The PR dimension, denoted D, reflects the sampling impact and depends on the distribution

p(X) of the functional coordinates X. Defining the sampling fraction as k = 1/¢, the mean Dy is
represented as:

q q
mean(Dpg) = é Y Dy = é > T (X)), (34)
i=1 i=1

where the neuron set 1,2,.., N is segmented into ¢ clusters {Xl,fz,...,fq}, each comprising %
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neurons. The probability distribution p,(X) corresponds to each cluster {X,}. The probability distri-
bution for each cluster, p,(X), emerges naturally from the sampling process.

The equivalence of the mean probability density function across the sampled clusters to the origi-
nal set's probability density function leads us to the condition:

v 2 -
. D pi(X) = p(X), (35)
i=1
This condition is a direct consequence of the sampling process, ensuring that the aggregated prob-

ability density function of all sampled sets mirrors the overall density distribution of the neurons.

Applying the Lagrange multiplier method to optimize the mean Dpg:

q q
L(p, ») = é D T p(X0) + / d'X A(X) G > pX) - p()h) : (36)
i=1 D i=1

Here L(p, 4) is the Lagrangian, A(X) is the Lagrange multiplier, we derive the optimal condition:

OL(p,A) _

o, 0, (37)

yielding:

X
1o A _

— 0. (38)
q op;(X) q

At the optimal mean Dy, each p(X,) is equivalent, leading to p(X,) = p(X,) = p(X) (representa-
tive of random sampling). Hence, the mean D, post-random sampling sets the upper limit for the
mean D,y after anatomical sampling.

Let us investigate the lower bound of the mean PR dimension with the ERM model. For the mini-
mization of mean(Dgy), a key requirement is the functional spatial proximity of neurons within the
same cluster, in other words, the neuron set should be distinctly separated in functional space.
Consequently, achieving the minimum mean PR dimension necessitates a functional sampling
strategy.

Derive upper bound of dimension from spectrum
To deduce D, from the spectrum, for simplicity, we focus on the high-density region, where we
have an analytical expression for A that is valid for large eigenvalues:

r

I 1l oy
/1,—}/<N> i =y RN for r < BN, (39)

where L is the size of the functional space, y is the coefficient in eq. (3), which depends on d, p,
and E(¢?). Note that the eigenvalue A, decays rapidly after the threshold r = (N). Since we did not
discuss small eigenvalues in this article, we represent them here as an unknown function n(r, N, L):

A =n(r,N,L) for r>p(N) (40)
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As discussed in Methods, without changing the properties of the spectrum, we can always impose
E(c?) = 1 such that

N

Y A =TrC)=N (41)

r=1
We emphasize that this constraint requires that large and small eigenvalues behave differently be-
cause otherwise Y™ »~* with a < 1 would scale as N'-%, and ¥' 4, is not proportional to N.

Using the Cauchy-Schwarz inequality, we have an upper bound of le A%

N 2
Y < <Z x,) = N? (42)
r=1 r

On the other hand, 42 is a lower bound of 3% 42

N
D 2> 2= LN (43)
r=1
As a result, the dimensionality
2
N
D <Zr=l AV)
PR = N B
Zr:l ﬂr
is bounded as
1 < Dpp < L#*y72 (44)

Under random sampling, L remains fixed. Thus, we must have a bounded dimensionality that is
independent of N for our ERM model. A tighter lower bound of Zil Atis

N BN)
Z /13 > yzL_z“Nz Z (r—2+2u/d) (45)
r=1 r=1

A tighter upper bound of participation ratio D, can be written as:

2
N
(Zr=1 i’) Ly
N
SLE E ()
However, in functional sampling, enlarging the region size with constant density p results in L ~

N4, Thus, the upper bound of D,; should grow as N?#/¢, consistent with the previously derived
result (eq. (33)) in Methods.

Doy = L#y2 (46)

Simulating CCA and anatomical sampling

In this section, we estimate the dimensions of the anatomically sampled neuron set. For simplicity,
we assume that the functional coordinates of neurons, X;, and the anatomical coordinates of neu-
rons, Y, both follow a multivariate Gaussian distribution. We define anatomical sampling, which
involves sampling on Y,, along a direction chosen arbitrarily and denote this direction as Y4. Subse-
quently, we perform sampling on X, in the direction denoted by X, which is determined to have
the highest correlation with Y4 according to Canonical Correlation Analysis (CCA). This process ef-
fectively mimics the scenario of functional sampling.

The key to calculating the PR dimension involves computing the expected value E._(C). In the
ERM model, the distribution of C;; can be estimated by the distribution of points in the functional
space. This allows for the calculation of the PR dimension across anatomical sampling by compar-
ing the distribution of X, after anatomical sampling with that after functional sampling. We can
model the distribution of X4 and Y“ as follows:
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Rpsap = COMT(XA, Y™,

— A yA
CASap =corr(X*,Y )axay,

XA N 0 , af Chsap 7
)& 0 Chasap 65

Here we consider only the projection of the functional coordinate onto the direction X4, which
exhibits the highest correlation, denoted by R,s,,, with Y. Specifically, when selecting the anatom-
ical direction as the first CCA direction, the correlation between X4 and Y4 reaches its maximum,
such that Rys,, = Reca- In this case, anatomical sampling results in the minimization of the dimen-
sionality.

(47)

Now, let us perform anatomical sampling on the neurons. The X, and ¥, denote the functional
and anatomical coordinates of the i neuron cluster after anatomical sampling, respectively.

To approximate, we need to calculate the functional coordinate probability distribution p(X,) =
p()?|qiyk <Yt < ‘1<y,~+1)k)' which is the distribution of the i neuron cluster after anatomical sampling.
Y4 represents the selected direction in anatomical space, and ¢/, denotes the ik™ quantile of Y4,
where k is the sampled fraction. Note the following relationships and distributions:

XA, YA =
pXAIYA =y) = —p(p(YA — y)y),
. (48)
pPXAYA =y ~ N <ya—x Rasap, 021 = RiSap)> :
y
XN = XA < YA <q =L [ Ay = (49)
p i - p qik q(i+l)k - k ) p - y y

Tik

The conditional probability distribution P(X*|q), < Y* < ‘1<y,-+|>k) is equivalent to the distribution

of the sum of Y2 R,q,, and X,, where X, ~ N'(0,03(1 - R}, )):
%y

o
X!t = YI.AG—"RASap + X,» (50)
y

1

P(YIA - y) - k 27[6y
0 otherwise.

exp (_2%) for qi'vk <y< q(y,-+1)k’ (51)

The computation of X involves two technical challenges: 1. The distribution of Y# is repre-
sented by a non-elementary function (eq. (51)), which complicates the direct calculation of X2,
which is the sum of Y/ Rys,,0, /5, and X,,. To facilitate approximation, we model Y;* using a normal
distribution with equivalent variance. 2. Calculating the variance of Y presents direct challenges,
and the variance of YA differs across different neuron clusters i. Using a uniform distribution for
Y simplifies this task (this assumption is only used to calculate the variance of Y,#). Under this as-
sumption, the variance of Y can be straightforwardly calculated as Var(Y") = k’c;. Consequently,
we approximate Y# and X as follows:
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! 2
y y
G t i o
A X 2 2 2 p2
Xi ~ ./\/ <TU_RAS‘3P,O—X(1 - RASap +k RASap) . (53)
y

Calculating the PR dimension directly from the distribution of X is difficult; thus, we approximate
anatomical sampling with fraction k as functional sampling with fraction &, leading to:

— 2 2
kf - \/1 + szASap - RASap' (54)

Using the equation for functional sampling Ef.;j(cfj) ~ k—zﬂ/dE,.#(ij) (eq. (32)):

EL(CH) = (1 + K Ry, — Rig,)) "/ 'Ey(C)). (55)
ASap _ kNOE(52)2 (56)

PR E(c*) + (kNO - D+ szlszap - Rlz\Sap

)"H/9E 4, (C})
Code and Data Availability

The source code in this work can be found at https://github.com/wzz1999 /ERM-scale.

The fish data collected and analyzed in this work can be found at https://doi.org/10.6084 /m9.figshare.

28721477.
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ws  Appendix 1

Appendix 1—figure 1. Related to Figure 2. Experimental data description. A. Spatial distribution of
segmented ROIs (shown in different colors). There are 1347 to 3086 ROIs in each animal. Scale bar, 100 ym. B.
Explained variance of the activity data by PCs up to 500 rank. The different colored lines represent different
fish data (n=6).
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Appendix 1—figure 2. The phenomenon of scale-invariant eigenspectra across different datasets. A-D.
Distribution of normalized pairwise covariances, where E(al?) =1 (Methods). E-H. Sampled covariance
eigenspectra of different datasets. I-L. Pdfs of sampled covariance matrix eigenspectra of different datasets.
The datasets correspond to the following examples: column 1: fish data (from fish 1, all fish data are shown in
Appendix 1—figure 10A-F) from whole brain light-field imaging; column 2: fish data from whole brain
light-sheet imaging; column 3: mouse data from multi-area Neuropixels recording; column 4: mouse data
from two-photon visual cortex recording.
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Appendix 1—figure 3. Comparison between ERM simulation and theory. A-C. Rank plots of the
normalized eigenspectra (4/p), with the simulations obtained using correlation matrix (sim: corr, 0',.2 =1)and
covariance matrix (sim: cov, neuron’s activity variance ¢? is i.i.d. sampled from a log-normal distribution with
zero mean and a standard deviation of 0.5 in the natural logarithm of the 6,.2 values; we also normalize

E(aiz) =1 (Methods)). The curves between "sim: corr" and "sim: cov" are nearly identical in panels A and B. The
theoretical predictions of normalized eigenvalues 1/p are obtained using the high-density theory (cyan,

eq. (12)). The density p decreases from panel A to panel C (p = 1024, 256, 10.24 respectively). D-F. Numerical
validation of the theoretical spectrum by comparing probability density functions for increasing density of
covariance ERM (p = 1024, 256, 10.24 respectively). Other simulation parameters: N = 1024, d =2, L = (N /p)'/?,
u=0.5,e=0.03125. The ERM simulations were conducted 100 times. The results are presented as the mean +
SEM.
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Appendix 1—figure 4. Covariance spectra under different kernel functions f(%). The figure presents
both the sampled eigenvalue rank plot and the pdf of ERM with different functions f(X) and varying

dimensions d, where panels A-D,1,J. display the rank plot and panels E-H,K,L. show the pdf of ERM. A,E.
lIx|l lIxIl
Exponential function f(¥) =e” » where b =1 and dimension d = 2. B,F. Exponential function f(X) =¢ &

lx)2
where b =1 and dimension d = 3. C,G. Gaussian pdf f(X) = e 2% where af( =0.1 and dimension d = 2. D,H.
llxi?

Gaussian pdf f(X) =e 2% where af =0.1 and dimension d = 3. LK. t pdf (eq. (11)) and dimensiond = 2. J,L. t
pdf (eq. (11)) and dimension d = 3. The ERM simulations were conducted 100 times and each ERM used an
identical sampling technique described in (Methods). The results represent mean + SEM. M. Summary of Cl's
for different f(%) and d. On the x-axis labels, 'e’ denotes the Exponential function f(%), ‘g’ denotes the
Gaussian pdf f(X), 't denotes the t-distribution pdf f (%), while 2" and '3' indicate d =2 or d = 3, respectively.
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Appendix 1—figure 5. Impact of s and d on the scale invariance of covariance eigenspectra in the ERM
with £ (%) = e~ 151", The columns from left to right correspond to n = 0.3, 0.5, 0.7, 0.9, and the rows from top to
bottom correspond to d =1, 2, 3 (eq. (2) and eq. (11)). Other ERM simulation parameters: N = 4096, p = 256,
L=(N/p)'/4, e=0.03125and o2 = 1. Each panel shows a single ERM realization. For visualization purposes,
the views in some panels are truncated since we use the same range for the eigenvalues in all panels.
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Appendix 1—figure 6. Impact of heterogeneous activity levels on the scale invariance. A. The Clas a
function of the heterogeneity of neural activity levels E(c}). We generate ERM where each neuron'’s activity
variance ¢? is i.i.d. sampled from a log-normal distribution where the logarithm of the variable follows a
normal distribution with zero mean and a sequence of standard deviation (0,0.05,0.1, ...,0.5) in the natural
logarithm of the values Ul_z_ We also normalize E(af) =1 (Methods). The solid blue line is the average across
100 ERM simulations, and the shaded area represents the SD. The red line results from the Gaussian
variational method with simulation value integration limit ¢}. The green line is the result of the Gaussian
variational method with high-density value integration limit qi‘ (Methods). py = 128. B. Same as A, but with a
smaller p, = 10.24. Other parameters: u =0.5,d =2, N = 1024, L = (N /p)'/¢, ¢ = 0.03125. C. The collapse index
(CI) of the correlation matrix (filled symbols) is larger than that of the covariance matrix (opened symbols)
across different datasets excluding those shown in Figure 4. We use 7,200 time frame data across all the
datasets. 12 to I13: light-sheet zebrafish data (2 Hz per volume); n2 to n3: Neuropixels mouse data,
downsampled to 10 Hz per volume, p2 to p3: two-photon mouse data, (3 Hz per volume).
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Appendix 1—figure 7. Modifications of f(X) near x = 0. The upper row illustrates the slow-decaying kernel
function £ () (blue solid line) and its power-law asymptote (red dashed line) along a 1D slice at various f(X).
The lower row is similar to A, but on the log-log scale. The formulas for different f(%)'s are listed in table 3 in
Methods.
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Appendix 1—figure 8. Comparisons of large eigenvalues across different smoothing interval sizes, e.
Rank plot (upper row) and pdf (lower row) of the covariance eigenspectrum for ERMs with different f(X). A.
€ =0.06. B. ¢ =0.12. C. ¢ = 0.3. D. € = 0.6. Other ERM simulation parameters: N = 4096, p = 100, u = 0.5, d =2,
L =64, Ul_z = 1. The formulas for different f(X)'s are listed in table 3 in Methods.
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Appendix 1—figure 9. Factors that do not affect the scale invariance. A. Rank plot of the covariance
eigenspectrum for ERMs with different f(%) (see table 3). Diagrams show different slow-decaying kernel
functions f(X) along a 1D slice. B. Same as A but for different coordinate distributions in the functional space
(see text). The diagrams on the right illustrate uniform and clustered coordinate distributions. C. Same as A
but for different geometries of the functional space (see text). Diagrams illustrate spherical and
hemispherical surfaces. D. Cl of the different ERMs considered in A-C. The range on the y-axis is identical to
Figure 4C. On the x-axis, 1: uniform distribution, 2: normal distribution, 3: log-normal distribution, 4: uniform
two nearby clusters, 5: uniform two faraway clusters, 6: uniform 3-cluster, 7: spherical surface in R?, 8:
hemispherical surface in R3. All ERM models in B, C are adjusted to have a similar distribution of pairwise
correlations (Methods).
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Appendix 1—figure 10. Fitting ERM to zebrafish data from our experiments (part 1). Comparison of
sampled covariance eigenspectra in fish data and fitted ERM models. The columns correspond to six
light-field zebrafish data: fish 1 to fish 6. Number of time frames: fish 1 - 7495, fish 2 - 9774, fish 3 - 13904, fish
4 -7318, fish 5 - 7200 and fish 6 - 9388. A-F. sampled covariance eigenspectra for different fish data. G-L.
Same as A-F but for ERM models with fitted parameters (u/d, L), functional coordinates inferred using MDS,
and the experimental ;. M-R. Same as A-F but for ERM models with fitted parameters (u/d, L), uniform
distributed functional coordinates, and a log-normal distribution of ¢2.

u/d =10.456,0.258,0.205, 0.262,0.302,0.308] in fish 1-6.
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Appendix 1—figure 11. Fitting ERM to all six zebrafish data from our experiments (part 2). Comparison
of the covariance matrix between fish data and our fitted model. The columns correspond to six light-field
zebrafish data: fish 1 to fish 6. A-F. The covariance matrix of different fish data. G-L. The covariance matrix of
ERM models with fitted parameters (u, L) and functional coordinates inferred using MDS and the
experimental o;.
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Appendix 1—figure 12. Fitting ERM to all six zebrafish data from our experiments (part 3). Columns
correspond to five light-field zebrafish data: fish 1 to fish 6. A-F: Comparison of the power-law kernel function
f(%) in the model (blue line) and the correlation-distance relationship in the data (red line). The distance is
calculated from the inferred coordinates using MDS. The shaded area represents the SD. G-L: Same as A-D
but on the log-log scale.
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Appendix 1—figure 13. Fitting ERM to all six zebrafish data from our experiments (part 4). Columns
correspond to 6 light-field zebrafish data: fish 1 to fish 6. A-F: CCA correlation between the first CCA variables
with different embedding dimensions in the functional space. Blue line indicates the CCA correlation of
example fish data, green line shows the CCA correlation of example fish data with shuffled functional
coordinates, and error bars represent the SD.
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Appendix 1—figure 14. Relationship between the functional space and anatomical space for each
zebrafish dataset from our experiments. Columns correspond to five light-field zebrafish data: fish 1 to
fish 5 (with fish 6 has been shown in Figure 5). A-E. Distribution of neurons in the functional space, where
each neuron is color-coded by the projection of its coordinate along the canonical axis b, in anatomical space
(see text in Result hyperref[sec:result fitting data]Result). Arrow: the first CCA direction a, in functional space.
F-J. Distribution of neurons in the anatomical space with the forebrain neuron located on the left side and the
hindbrain neuron on the right side. Each neuron is color-coded by the projection of its coordinate along the

canonical axis 4, in functional space (see text in Result). Arrow: the first CCA direction 5, in anatomical space.
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Appendix 1—figure 15. The effects of hunting behavior on scale invariance and functional space
organization. A,B. sampled covariance eigenspectra of the data from fish 1 calculated from control (A) and
hunting removed (B) data . Ctrl: We randomly remove the same number of non-hunting frames. This process
is repeated 10 times, and the mean+SD of the Cl is shown in the plot. Hunting removed: The time frames
corresponding to the eye-converged intervals (putative hunting state) are removed when calculating the
covariance (Methods). The Cl for the hunting-removed data appears to be statistically smaller than in the
control case (p-value= 1.5 x 10~?). C. Functional space organization of control data. The neurons are clustered
using the Gaussian Mixture Models (GMMs) and their cluster memberships are shown by the color. The color
bar represents the proportion of neurons that belong to each cluster. D. Similar to C but the functional
coordinates are inferred from the hunting-removed data. The color code of each neuron is the same as that
of the control data (C), which allows for a comparison of the changes to the clusters under the
hunting-removed condition. See also the Movie. S1. E. Fold change in size / area (Methods) for each cluster
(top; the gray dashed line represents a fold change of 1, that is, no change in size) and the anatomical
distribution of the most dispersed cluster (bottom).
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Appendix 1—figure 16. Removing the time segment of hunting behavior does not obliterate the
scale-invariant eigenspectra. Rows correspond to 4 light-field zebrafish data: fish 2 to fish 5 (results for fish
1 have been shown in Appendix 1—figure 15). A,C,E,G. Ctrl: we randomly remove the same number of time
frames that are not the putative hunting frames. We repeat this process 10 times to generate 10 control
covariance matrices and the Cl is represented by mean+SD. B,D,F,H. Hunting removed: data obtained by
removing hunting frames from the full data (Methods). The Cl for the hunting removed data appears to be
significantly smaller than that of the control case (one-sample t-test p = 2.2 x 10710 in fish 2, p = 4.6 x 10~ in
fish 3, p=1.7x 1072 in fish 4, and p = 3.4 x 107 in fish 5).
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Appendix 1—figure 17. Hunting behavior reorganizes neurons in the functional space (continued on
next page). Rows correspond to 5 light-field recordings of zebrafish engaged in hunting behavior: fish 1 to
fish 5. A,D,G,J,M. (top) Functional space organization of the control data inferred by fitting the ERM and MDS
( Result). Neurons are clustered using the Gaussian Mixture Models (GMMs) and their cluster memberships
are shown by the color. The colorbar represents the proportion of neurons belonging to each cluster.
A,D,G,J,M. (bottom) The coordinate distribution of the cluster in control data which is most dispersed (i.e.,
largest fold change in size, see below) after hunting-removal. The transparency of the dots (colorbar) is
proportional to the probability of the neurons belonging to this cluster (Methods). The cyan ellipse serves as a
visual aid for the cluster size: it encloses 95% of the neurons belonging to that cluster (Methods). B,E,H,K,N.
(top) Similar to A,D,G,J,M. (top) but the functional coordinates are inferred from the hunting-removed data.
The color code of each neuron is the same as that in the control data, which allows for a comparison of the
changes to the clusters under the hunting-removed condition. B,E,H,K,N. (bottom) Similar to A,D,G,J),M.
(bottom) but the functional coordinates are inferred from the hunting-removed data. The transparency of
each neuron is the same as in A,D,G,J,M. (bottom), and it represents the probability p,, (Methods) of neurons
belonging to the most dispersed cluster k in the control data. Likewise, the cyan ellipse encloses 95% of the
neurons belonging to that cluster (Methods). C,F,L,L,0. Top, size/area fold change (Methods) for each cluster
(the gray dashed line represents a fold change of 1, i.e., no change in size); bottom, the anatomical
distribution of the neurons in the most dispersed cluster.
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Appendix 1—figure 17. Hunting behavior reorganizes neurons in the functional space (continued).
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Appendix 1—figure 18. Negative covariances do not affect the eigenspectrum of the zebrafish data.
Red: eigenspectrum of the original data covariance matrix. Blue: eigenspectrum of the covariance matrix with
negative entries replaced by zeros. In this figure, all neurons recorded in each fish were utilized without any
sampling.
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Appendix 1—figure 19. Eigenspectra of RG-inspired clustering, direct functional region sampling
(FSap), and random sampling (RSap) in ERM. A,D. Renormalization-Group (RG) clustered eigenspectra of
ERM. The size of the cluster is denoted by N, which is the number of neurons in each cluster. We adopt the
RG approach Meshulam et al. (2019, 2018), but with a specific modification (Methods). B,E. Direct spatial
sampling in the functional space (FSap) and the corresponding ERM eigenspectra. We began our analysis with
a set of N, neurons distributed in the functional space. Initially, we chose N = N, /2 neurons that were
located exclusively on one side of the x-axis of this space. We then proceeded to select N = N, /4 neurons
from 4 quadrants. This sampling process was repeated iteratively, generating successively smaller subsets of
neurons. C,F. Random sampled (RSap) eigenspectra of ERM. ERM parameters: A-C Exponential function

f(®) = e IE/b where b = 1, p = 10.24 and dimension d = 2. D-F Approximate power law eq. (11) with 4 = 0.5,

p =10.24 and dimension d = 2. Other parameters are the same as Figure 3. The standard error of the mean
(SEM) across the clusters is represented by the shaded area of each line.
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Appendix 1—figure 20. Dimensionality (Dpr) across sampling methods in fish data. A-F Result from fish
1 to fish 6: mean RSap Dpg (circles), mean (squares) and individual ASap Dpg, and FSap’s most correlated
cluster Dpg (triangles). Dashed and solid lines indicate RSap and uniform FSap theoretical predictions,
respectively.
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Appendix 1—figure 21. Dimensionality (Dpg) across sampling methods in ERM. PR dimensionality result
of ERM model, coordinate in funcitonal and anatomical space are multivariate Gaussian distribution, the CCA
correlation between funcitonal and anatomical space are R, = 0.4,0.6,0.8 in A-C. Mean RSap Dpg (circles),
mean (squares) and individual ASap Dpg, and FSap’s most correlated cluster Dpy (triangles). Dashed and solid
lines indicate RSap and uniform FSap theoretical predictions, respectively. ERM parameter: y = 0.6, d = 2,
functional coordinates follow a multivariate normal distribution with variance o7, =2, afz =1, anatomical

coordinates follow a multivariate normal distribution with variance ‘751 = 1,a§2 = 1,053 =1.
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Appendix 1—figure 22. Example of Renormalization Group (RG) approach for a set of eight neurons.
The figure is adapted from Meshulam et al. (20719). The diagram illustrates the iterative clustering process for
eight neurons. In each iteration, neurons are paired based on maximum correlation, with their activities
combined through summation and normalized to maintain unit mean for nonzero values. Each neuron can
only be paired once per iteration, ensuring all neurons are grouped by the iteration’s end.
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Appendix 1—figure 23. Morrell et al.’s latent variable model. A-D: Functional sampled (FSap)
eigenspectra of the Morrell et al. model. E-H: Random sampled (RSap) eigenspectra of the same model.
Briefly, in Morrell et al.'s latent variable model Morrell et al. (2021, 2024), neural activity is driven by N, latent
fields and a place field. The latent fields are modeled as Ornstein-Uhlenbeck processes with a time constant .
The parameters e and n control the mean and variance of individual neurons' firing rates, respectively. The
following are the parameter values used. A,E: Using the same parameters as in Morrell et al. (2021): N, = 10,
€ =-2.67,n =6, r = 0.1. Half of the cells are also coupled to the place field. B,C,D,F,G,H: Using parameters
from Morrell et al. (2024): N; =5,e=-3,n=4 Thereisno place field. The time constant = = 0.1, 1, 10 for B,F,
C.G, and D,H, respectively.
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Appendix 1—figure 24. Scale-invariant properties persist across different temporal sampling rates in
neural recordings. Analysis of multi-area Neuropixels recordings Stringer et al. (2019b) from 1024 neurons,
downsampled to different rates resulting in 7200 time frames per condition (6 Hz, 12 Hz, 18 Hz, and 24 Hz;
columns 1-4 respectively). A-D. Distribution of pairwise covariances after normalization to unit variance
(E(aiz) = 1, see Methods). E-H. Eigenvalue spectra of the covariance matrices, showing similar power-law
scaling across sampling rates. I-L. Probability density functions (PDFs) of the eigenvalues, demonstrating that
the characteristic shape of the distribution is preserved across different temporal resolutions.
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Appendix 2

In this appendix, we elaborate upon the sketch introduced in the Methods, and present a full deriva-
tion of the covariance eigenspectrum of our ERM model, This section is organized as follows. First,
we will briefly introduce the relationship between the eigenvalue probability density distribution
and the resolvent. Second, we will turn the problem of calculating the resolvent to a calculation
of the partition function using a field-theoretic representation and proceed to manipulate the par-
tition function using the replica method. Third, we will introduce two approximate methods for
calculating the partition function, leading to the high-density theory and the Gaussian variational
method. We will discuss the implications and predictions of each method. Finally, we will discuss
the relationship between the two methods and identify the parameter regime where the high-
density theory agrees with the numerical simulation.

Notation Description

g(z) resolvent, eq. (52)
() the average across realizations of C (i.e,, random X/'s and ¢7's), eq. (S1)
Z(z) Canonical partition function, Gaussian integral representation of the determinant [det(z — C)]~'/?, eq. (S5)
) intermediate variable for Gaussian integral representation Z(z), eq. (S5)
W density field of ¢
W respective Lagrange multiplier fields of w
S, the action in E(z) (by analogy with the path integral formulation of quantum mechanics)
Sy the action in the high-density approximation of E(z)
S, the action in the variational approximation of Z(z)
A termin S,
- the operator inverse of f, eq. (523)
G quadratic kernel in the Gaussian integral approximation of E(z)
G! the operator inverse of G, same definition as /!
G the Fourier transform of G

Appendix 2—table 1. Table of notations.

Resolvent
The eigenvalues 4, of a Hermitian matrix C are real. Their probability density function or eigenden-
sity is formally given by

N
1
P = <n2=;6u— An>>, (S1)

where (...) represents an average across different realizations of C. The eigendensity is connected
with the resolvent Mézard et al. (1999); Goetschy and Skipetrov (2013)

1 1 1 /w1
g(z)zﬁ<Trz—C>=N<;z—/ln>’ (52)

we therefore compute the eigendensity using the standard inverse formula of Stieltjes tranform:

p(A) = -1 lim Im g(A + in) (S3)
T n—0*

69 of 92



1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Field representation
In this section, we discuss a field-theoretical representation of the resolvent g(z). First, we rewrite
eq. (52) as

g(z) = _%az (1n [(det(z — C))"/]) (S4)
The determinant (det(z — C))"'/? can be represented as a Gaussian integral

T g, dgy

v~

E(2) = (det(z — C))™ /2 = iN/2 exp [—éth(z - c>c1>] , (S5)

where @ = [¢,, ..., 517, and i =/ -1.

+o0 d d . .
nZ(z) = In P 9N e [—ich(z - C)CI)] _izN (S6)
- A2z 2« 2 4
We thus establish a relationship between the resolvent and 2
(2) = ~ 0, (InE(2) (57)
g - N z =

Note that the constant term in eq. (S6) can be killed by 9, and we will ignore it in the sequel. eq. (57)
is the central formula in this note. E(z) is also called the partition function in statistical physics. We
endeavor to find a way to compute the average of InE(z).

Recall that in our ERM model (Result eq. (2) and Figure 3A), the covariance between neuron
i and neuron j is determined by the distance kernel function and their neural activity variances:

C,= S - 551-)6[6/-,

(S8)

where X, are sampled from a uniform coordinate distribution p(x,) = 1/V; o, are i.i.d. chosen from
a probability density distribution p(c) and are independent of the neuron coordinates X,. The (...
in eq. (S7) is therefore an average over all possible X, and ;.

In order to compute (InE(z)), we apply the replica method based on a smart use of the identity

In x = lim X—1
n—0 n
eqg. (S7) now becomes
25 Tim L @ - 1)] = - 26, [iim L 1 ¢
o0 = g2 i 5 =0 0] = 2. im0 (2

The idea is to compute the right-hand side for finite and integer n and then perform the analytic
continuation ton - 0.

Now we seek to determine the value of (E"(z)). It contains n copies (replicas) of the original
system

(E"(2)) = (i)% / (dg!...dgD)...(dY, ..dg",) <exp [_% Y o (z - C)(Da} > . (510)
—o0 a=1
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120 Writing it down explicitly, we have

—n Lown [T . R A e
(E'@) = () / dg!...dg")...(dgp), ...dep" ) / — / p(6,)do,...p(cy)do
-L

—eo V vV (S11)
- n N .n N
exp [—3’ DI NCARED I A 7ck>a,-ak}
a=1 j=1 a=1 jk=1
121 In order to proceed further, we introduce the following auxiliary fields :
N
ACEDW L) (512)
Jj=1
12 eq. (S12) can be represented as a following functional integral
4o N N
1= [T w15 - 3, g5 - %) (13)
-0 g=] j=1
+o0 +oo
5ply = / D] expli / Sy D) (514)
1523 Or we can combine eq. (513) and eq. (S14) as
+o00 400 N +o0 N
1= [ [ [ peiwes [i [ et - 3 gt - o (515)
-0 J-oo =] - j=1

N
152 Using eq. (S12), we can write the term % > d)‘;gbe()‘c’j -X,)ineq.(S11)as
Jok=1

N +00
Y HHIG -F) = / AR f(% - ¥ Dy (@) (516)

Jk=1

125 We insert the relation eq. (S15) and eq. (516) into eq. (S11),
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. 1 +o0 X ) . ) de)-el dd_;C*N
(E"(2)) =(Z) 2 [oo (d([)l...dd)l).,.(dq')N...d([)N)[L T /p(o'])dcr].,.p(aN)dGN

o N .on N
exp [—% PIPNCAREDIDILVEIS >]

a=1 j=1 a=1 jk=1

+00 400 N +00 N
/ / [ ot 1Dt T exp [i / AR ) - Y B8~ 55,-)6,-)1/7“(55)}
—oo J— —o0 j=1

® =]

R e e
=(i)7/ [T prw1p0371 /_m (dp)...dg")...(dg),..dg")

% g=1

Ladx, dix%y
vy p(o))do,...p(cy)doy
-L

. n N . n N
on -4 5 3+ 4 3 3w -sae

a=1 j=1 a=1 jk=1

n 400 N
exp [i 2 / dF ) - Y 6~ )?,-)a,-)ti/”(?c)]
a=1J - j=1

(517)
1 N +oo M i n +00
=27 / ) ED[w"]D[u@"]exp [EZ] / i d%dsc”f(%—%')w"(%)w“(%/)]
400 | . ' . L dd)?l dd)'C’N
/ (dd),.,.dd)])...(dd)N...quN)/ T /p(al)dal...p(O'N)daN
—o0 —L
i n N n +o0 N
exp [—3 IPACHETDY / R - Y $GE - %)apu?“(i«')]
a=1 j=1 a=1 Y —® j=1
1 A» o - a ~a in +m—>—>/—> SNy AN a2
=(5-)" L gD[w 1D[§“Texp [521/00 XA £ (3 = ¥ W @ (x)]
[ n +oo
exp [i ) / dd?cw“(fc)u?"ﬁa]
| a=1J—®
+o0 . ., . . L dd;c'l ddi’N
/ (d(/)l...dd)l)...(d(j)N...dd)N)/ T /p(a,)dal...p(aN)daN
oo -L
B Zi n N n +oo N
exp —3’22(4;;‘)2—1'2/ dd?czqué(;c‘—;?j)ojlp"(z)]
L a=1 j=1 a=] Y —© Jj=1
126 Integrating the last term in eq. (S17)
400 der_ Zi n n +00
/ ddw,.'...dd)’f’/ 7’/d6ip(0',.)exp -5 2((1,?)2_1‘2/ ddrqsf’é(r—ri)o-iy;a(r)]
—o0 -L a=1 a=1 Y —®
_/Lﬂ/mdqsl d¢"/da ooexp |-Z @7 -1 Y dror)
- . V . ittt i ip i p 2 o i o i il// i (518)
_ 2m.n bdir, inw 2 2
=) / 2 / do;p(o,) exp [EZ;"’ (r)’o;
2z [P a? I
= (20 / ] > / dop(o) exp [z’—z;w“m%z]
127 SO that (E"(z)) from eq. (511) can be written as
+oo M
(=) = / [ Dty 1114V e (519)
—00 =1
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1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

d’x

L . n
where A= [L 7(zi)_% /dap(c)')exp [é ’;If/”‘(?)%‘z] (S20)

.on 400 n +0o0
and S, = %Z{ [ ) dzdx’ f()_é—)_c")y/“()_c’)t//"(y_c”)+izl [ ) PRy G RE) (521)

Integrating out the yw* in (E"(z)) eqs. (519) and (521)

+00 . +o0 +0o
/ D[y “]exp [% / dXdx' fR = Xy "y (X)) +i /

0 0 —00

dd%‘ll‘l(})ﬁ/a(%)] (522)
. +o0
= Qri)N?(det £)"?exp [—% / dxdx’ f71(% —z’)up”(?c)lp“(%’)]
Here f~!is the inverse kernel satisfying:
+o0
/ dX"fG-¥fE -3 =8(G-%) (S23)

so that (2"(z)) can be written as

N +00 (S524)
(E"(2)) = i) 7 (det f)™/2 / D[y e

.o n +c0
S, =NInA- % > / dxd® 1% = W@y ) (525)
a=] Y —®

The constant term (271'[)% of (E"(z)) can be ignored because we should compute 9, (In E(z)) eq. (S7)
in the end.

To ensure the mathematical rigor in, eq. (S42), we next apply the Wick rotation y*(X) — y/”(f)e_i%
(Appendix 1—figure 17).

+o00
(B"(2)) = (det f)™/* / D[y“]e® (526)
S,=NinA—1 Z / " dxdX’ 1% = X)W G (S27)
l 2 a=1 Y —®
A= / ' ﬁ(z)’% / dop(c) exp RS ilpa(z)zﬁ (528)
L |4 2z =l

High-Density Expansion

In this section, we directly calculate the canonical partition function (E"(z)) in the z — oo limit by
approximating the term N In A4 (eq. (527)) to a quadratic action, from which the partition function
(eq. (526)) would become a Gaussian integral.

Let us first calculate the AN in z - oo limit

73 of 92



lim A ~ (z)"2 /dcp(a) [1+/ &'z 1 1,7“(55)252]
2— 00 P
y Lz | & (S29)
=@z |1+ [ d 2/ —— ) P2
(2) [ / op(o)o s a=1w (X)]
= (2} [HE(GZ) / ¢'x - 1?/“(55)2]
a=1

lim AN = lim(z)~ %" 1+NE(O'2) / &' 1 VAIQ()?)2:|

Z—00 zZ—>00

= lim(z)" %" 1+NE(02)2/ ezl A“”]

~ (z)’% exp E(az)/ d X N Aa()?)z]

122 Now let us calculate (E"(z)) (egs. (526) to (528)) by letting L — o

(530)

e (s31)
(@) = e @ [ b

1513 Where the high-density quadratic action

s, =@ [ EXN A“(ic’)z iy / GRG0 D @)
A & 24 (S32)

=_%§/m dXd¥' G (% = X)W PR

s Where G-'G -9 = f1(Z -y — %;’2)5(55 — 3. Next, by integrating out the y field, we find

+o00

(E(2)) = (det )22 / DIl (533)

©

= (z" det f det(G~"))™"/?

a5 Using eq. (S9) that connects the partition function with the resolvent, we have

g(z) = —20 [hm In ((det(zfG™"))" n/Z)]
/+oo ddk NE(Gz)f(%) (S34)
N (27r)‘1 %4

p ) QO 2 _ pE(62)f (k)

16 Where f(%) is the Fourier transform of ().
1547

148 Finally, the eigendensity p(1) (eq. (S3)) is given by
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1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

p(d) = -1 lim Im(g(A + in))
T n—0*
(S35)

_ l +oo ddi(‘ ~ b
=3 /_m 2n) 6(4 — pE(c) f (k)

1 ik 2 =
= PE(?) /,m @’ (E(cﬂ) N (k))

Derivation of power-law eigenspectrum in high-density limit
Here we calculate the eigendensity of our model, with the kernel function f(X) (table 3). The
eq. (S35) (set E(e?) = 1 as in Result) can be written as:

Sut Ikl
p(A) = -
Qo g2 fr(ky)

where S,_, is the surface area of d — 1 dimensional sphere. Here we consider the approxima-
tion f(X) ~ €*||X||™#, whose Fourier transform and its derivative are f(k) = c0||k|| @ frk) =

du

¢, [IkI=@=++Y and |kl = f~'(2 ) = (—) o -#. The constants are given by ¢, = 24~ ”nw"r(r( )) = €’c,,
2

kol = f‘l(ﬁ) (S36)

- znd )
=—(d = peg, ¢ = 27"z r(é)

oy = Sz Wkoll™ Sy kol

QO 2 i O Pl

(S37)
d d
S C'H 2d—pu S Cﬂ 2d—u
=i d G T T a it i (petyT
) p2(d—u) p n H

Derivation of eigenspectrum with exponential kernel function in high-density limit
Here we consider the exponential kernel function f(¥) = e~*I*l, whose Fourier transform and its
derivative are f(k) = —%——, f'(k) = -L’“'M and ||kl = 7~ ( ) = \/("”)ﬁl — B2, |lkl>+ b =
PR 2 G+HEDT 2
. 2
(42)a1, where ¢, = 2/ *br(%)

> - _d+3 o
oy = Sast Wkl Syt (8 + RIS gl
@Ot 2 frkl - G pd + l)k’oc1|
d+3 -
R L
_ L ] 20 d-1 . ¢ de I a3 ||k 142 (S38)
Qo @+ DRlel | d+ DQ2x)
d—1
S, a4 . w 2T TED
= m2L1+]ﬂd+l ]"( )d+l (pb )d+l A d+1((f)d+l -1

It is straightforward to see that this spectrum is not scale invariant. For example, when d = 2, the
—d+1 d+3

above expression reduces to a perfect power law spectrum p(1) ~ p @t 4, which changes with

scale over sampling.

Variational Approximation

To find a general approximation for the eigenspectrum that goes beyond the high-density limit, we
use Gaussian variational approximation in the field representation, namely by looking for the best
quadratic action S,

n +00
5, =-x 3 / dRAY' G (R — e DA F), (S39)
24/, ap

to approximate the action S, in the partition function (egs. (526) to (528)). This enables us to
represent the partition function by a Gaussian integral, which can be evaluated analytically. We
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find the best quadratic action S, by minimizing the difference between .S, and .S, which is defined
as KL divergence between two distributions that are proportional to e5t and e5.

In this section, we will proceed by using the grand canonical ensemble formulation, namely the
average in eq. (S1), instead of using a fixed covariance matrix size N, which is now carried out
across all different sizes. If N follows a Poisson distribution, it is easy to show (Appendix 3) that
the grand canonical partition function is given by eq. (5113):

—n aV
Z= ZN‘,(E‘N(Z))m,

where a = (N). As a result, the new action .S, becomes

P (S40)
S, =NA—§;/_OO dRZd¥ (3 = WG R).

Here and below, N should be viewed as the average matrix size. The resolvent g(z) in eqg. (S9) can
be similarly generalized to eq. (S114),

. 2
#(0 =l 57-0.1n2

As in statistical physics, we define the free energy as

+oo (S41)
F=-InZ=-In / D[j1e":

We shall define the variational free energy F, such that it would approximate the true free energy
F, by minimizing Dy, (P,|| P)),

(S42)
F,=Dy,(P,||P)+ F,
where
S S43
P=—— >
f_oo D[j]es
eSo (S44)

v

[T Dlpeles:

The KL divergence Dy, (P,||P,) is always nonnegative and the free energy F, is independent of the
quadratic action S,. Therefore, we need to minimize the variational free energy F,. Let us now
examine the variational free energy F,
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F, =D, (P)|P)+ F,

=—/ D[y“ "ln——an

+oo0 +oo +oo
=—/ Dp*1eS(S, — S, — ln/ D[u?“]esv+ln/ D[§p“leS)—In Z

© 0

+o0
=_/ D[j*1e%(S, - S,) —In Z,

Here Z, is the normalization factor

+oo
zZ,= / Dlp“Je’:

00

Since we want to minimize F,, the constant term

1 +00
— D[y*le5' S, = const
Z [ . [W¥le>S,

can beignored, and eq. (545) is reduced to

+o
F,= _ZL/ D[y1e5 S, —In Z,

To simplify the formula, let us introduce S,

n +00
S, = —% 2 / dXd¥ £ (% = X (i ()
a=1 Y —®

and rewrite eq. (548) as

1 +00 » 1 +o0 "
F, = _ZLO D[y*e’ S, — Z[oo D[y*1eS*NA-InZ,

Next, we will compute each term in the variational free energy F,
First, we calculate the third term In Z, in eq. (S50) by egs. (539) and (546)

In ZU =In <H(27[)N/2(det(Gal; ))_% >
= Z L indet(@,) + X mn)

Second, we calculate the first term Z— /_:’ D[y*]e5S, in eq. (550)

(545)

(546)

(S47)

(548)

(S49)

(S50)

(S51)
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+oo

_/ D[y ]e "S :7]11111 D[lpa]eS,,+hSZ
:L lim i H [det(G—l + hf_l)]
Z, h—0 0h af

=lim — H ldet( + /™' G,)] 2

h=0 0

1

: [T [de;p] °

a#f

(S52)

= Z —lim(1 — —Tr(f 'G,)

=- Z 5Tr<f‘1Gm)

1507 Third, we calculate the second term ZL /_*;’ D[j*]eS* N A in eq. (550), recall the term A (eq. (528))

A=/ E(z)"/dap(a)exp [% Zlf/a()_f)zdz]
—-L z a=1

1 +oo

7 [ e

_N(z)fg +eo 1.5, d’x 1 )
=— /dap(o)[m D[j“e / exp [2 21 P (®o

v

N(z)2 Ladz, [ 1 s o (S53)
-7 /dap(a)/_L - /_m D[y Texp Su"'z_z;lll 70
: 1
N(z) 2 /d p(a)/ H[det([{aﬂ) E
_n La de _1 %
—N(z) / dop(o) /_ 5 ]'/! [det(KaﬁGaﬂ)]
198 Where
1 n 1 n +oo 1 n
1 cagzy2 21 S T e i P N PNy PN ~ag2y2 2
Su+2za§w € 2%‘,[& dXdX' G (% = 3 )i @ (X)+2ZZ1W @’o (S5
1 n +00
_ 2q4 K-1(% — Ve (DA (2
_—Eazﬂ/w dxdx Kaﬁ(x—x)y/ COwr (X"
2
K (G.5) = GjR.5) = 8,58 = 3,)6(7 - %)
(S55)

2
det(K;}G,p) = 1 - %5aﬁG(5£O,7cO)
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ZLU[ D[y*1e5* N A N(z)" /dap(a)/ H [det(K Gaﬂ)] 2
=N(z)"2 / dop(c) /_ , %H[detw;jcm)]‘f

n L gdy 2 .

=N(2)} / dop(o) / ) % ]:[a = =G G %))

=Ny _2G, o)t
=N(2) / dop(@) [0 = GO

(S56)

=N(z)"2 / dap(a)exp(——Tr In(1 — —2 (2 = G(k)))

199 In sum, the variational free energy F, is equal to

F,= Z %Tr(f_lG,m) - Zﬁ %ln(det(Gaﬂ))

; o2
—N(z2)2 /dap(a) exp(——Tr In(1 — — G(k))) (S57)

(2 )
NV [ &k GR vV
_za: 2 / @ fGy 2 / 2y zln(G"”(k))

— N(z)2 / do-p(a)exp(——Tr In(1 — —2

(2 )d L

100 Now let us find the best quadratic action .S, that minimizes the variational free energy F,

) S58
5C., (558)

w01 The solution of eq. (S58) is given by

- - (S59)
G;l;(k) =6,,G™' (k)

~1q —/dGP(U)LZﬁH - % =0 (560)
@ z-062 [DkG(R) Gk

w2 Where [ Dk = [ <X By using eq. (5114)), we finally obtain

(€2 )d

S61
g(z)—hmiiF lmiiF.z/dap(a)% (561
nN 9z oz z—0o? [ Dk G(k)

w3 Scale invariance of the covariance spectrum in the Gaussian variational Model

104 IN Result, we point to two factors that contribute to the scale-invariance of eigenspectrum using
105 the high-density theory. In this section, we show that the same conclusion can be drawn by using
wos the Gaussian variational method. Furthermore, we examine how the heterogeneity of neural
o7 activity influences the eigendensity calculated by the Gaussian variational model. We show that
1608 ”g—:’” which characterizes the change of eigendensity due to sampling in the functional space,
1w0s decreases with the heterogeneity of neural activity described by higher-order moment of neural
1610 activity variance, e.g., E(c*).
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Let us rewrite eq. (560) as

g:/D%G(%):/D%Lﬁ
1= M) f (k) (562)

_ po’
M(z) = /dO'p(o) 2= 0?00
To present a formal expression for the eigendensity, let us define Re(¢) = g,, Im(G) = g,. From
eqs. (S3) and (S61), we find
1 o’g
Ap)=—( ———————— ) | S63
p(4, p) P <(ﬂ—0’2g,)2+0'4g,-2 >{; ( )

where (...}, = [ ...p(¢)do.

A direct computation of eq. (563), however, remains difficult: the complication arises from
the complex function M(z) in eq. (562), which in turn is an integral function of G. To streamline the
calculation, let us further define Re(M) = pa, Im(M) = pb. Writing it down explicitly, we have

2 A= 2
oz G zo8) (S64)
(A-o2g ) +o'g] [
4
p=( — %8 (S65)
(/1 - O—zgr)2 + 64g,'2 -

The real and imaginary part of ¢ can now be expressed as functions of e and b. Integrating eq. (562)
in the spherical coordinates, we have

/e 7 _ £
8 (p) = Sd_ld / dkckd=1 f(kz[l paf(k)]~
@r) Jzr [1 = paf(k)* + p*b* (k) (S66)
/e 72
g = ot / dkk™! WG
@r) Joyr [1 = paf (k) + p*b* f2(k)

where for clarity, we have abused the notation a bit by defining k = |[k||; S,_, is the surface area of
unit d-ball in the momentum space. In order to evaluate the integrals analytically, we introduce an
ultraviolet cutoff = /e. Numerically, whether integrating up to = /e or greater than this bound shows
little difference.

Numerical solution of the Gaussian variational method
With egs. (563) to (S566), we numerically calculate the eigendensity iteratively from the following
steps:

+ Step 1: set the initial values of cand bas a, =1, b, = 1
+ Step 2: solve for a in eq. (S564) with fixed b

+ Step 3: solve for b in eq. (S65) with fixed a

+ Step 4: iterate Step 2 and Step 3 10 times

+ Step 5: calculate p(4) using eq. (S63)

Note that we plug eq. (S66) into eqgs. (S64) and (S65) in step 2-3.

Two contributing factors on the scale invariance

We next derive an analytical expression for eq. (S66) by considering the approximate power law
kernel function f(X) ~ e*||X||™#, u > 0, from which the high-density theory results on the scale
invariance can be extended.
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By a change of variable x = f(k) ~ e*k~@=, and let x, = f(’é—’_), X, = f(%), we have
ud

edn [T pbx_ﬁ
() ~ d , s67
&) d_ﬂ/xe S e (567)

where ~ indicates that all constant numerical factors (e.g., = and I'(d /2)) are ignored. To compute
eq. (S67), we perform a branch cut at [0, o], and perform a contour integral on the complex plane
following the path in Appendix 2—figure TA. When 0 < g =1 - fu < 2, the integral on the large
circleT; and the small circle T, goes to zero as x; — o0, x, — 0, leaving only two simple poles (zeros
of the function in the denominator) in the complex plane. By applying the residue theorem, we
find an expression for g, in the limit L - co,e —» 0

cosf=——2
va:+bp?
d—2u
p= d—n (S68)

S

H

edx sin(f—1)0 abp'~?
d — psin@sinzf (a® + b2)F/2

& ~

The analytical expression for g, is a bit more involving.

pud d

)~ £ / " X T a (569)
&) ~ d—u /., x[l — pax)? + p2bh2x? bgi

¢

It has two terms, the second term is similar to eq. (S67); the first term, however, diverges as x, — 0.
Thus, the radius of the small circle T, in Appendix 2—figure 1A cannot shrink to zero: this is precisely
the requirement of an ultraviolet cutoff in the wave vector k. The contour integral on the large circle
s, on the other hand, goes to zero as x; — . Thus, the integral on I, contributes to the final
result. By considering leading order term of x, for finite but small x_, we find

cosf=——2 —
Va?+ b*
_ TH
"= (570)
ud wd
ein X g sin(y —1)0  mp? a
& d—puy d-—usin@sinxy (a* + b2)/? p&i

H

[ —
(z/e)t=n

Recall x, ~ , and we find that the first term in g, is proportional to z*/u, independent of e.

Appendix 2—figure 1. Calculate g; and g,. A. The path of the contour integral for g;, g, (eq. (567)). B-C. The
heatmap of g, and g; with respect to 4 and p. g;, g, in B, C are calculated by the numerical method (Methods).
The parameters are N = 1024, p =10.24,d =2, L =10, u = 0.5, ¢ = 0.03125. af is i.i.d. sampled from a
log-normal distribution with zero mean and a standard deviation of 0.5 in the natural logarithm of the 2
values; we also normalize E(o‘iz) =1.
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According to egs. (S68) and (S70), one can immediately see that as u/d — 0, the p-dependence
relationship vanishes for g, and g,. We therefore conclude that a slower power-law decay in the
kernel function and/or a higher dimension of the functional space are two contributing factors for
the scale-invariance of the covariance spectrum.

Heterogeneity of neural activity across neurons enhances scale invariance
Next, we take a more close look at how the eigendensity changes with p for finite but small u/d
and when 4> 1. Using eq. (563), we have

op 1/ 0g 0’ [(4 - 0%g,)* + o*g?| — 20°g? N dg, 20%g,(A—oc%g,) (571)
dp 7w\ Odp [(/1 —062g) + 64gi2]2 dp [(i —02g) + 64gi2]2 .
From numerical calculation, we find that typically g, > g,, so one can use the approximation
0 0g; 2 13} 20tg,
L . N — +l< 08 > (572)
dp 7w\ 0p (A—02g,)2 +0%g? L7 dop (A—-02g) [,
Recall eq. (S63)
1 o’g;
ap=—( — 2%\ S73
p(4,p) 7[<(A_62gr)2+0-4gi2> ( )
Since p(4, p) is very small for large 4, a more appropriate measure is to examine
64
a1 ap g 9 <—7Uz,s>
ogp _19p 981  ,98 \Go)/, (574)

dp  pop  dpg 6p< o2 >

(A-02g,)?

Considering the large eigenvalue case 1 > o2g, (the numerical value of g, is on the order of 1), we
perform Taylor expansion and arrive at

o2 o2 20%g, 30°g’
<—M_62g)2> z<?+ o (S75)

ot ot 3o%g,
<(/1 Z azg,)3> ~ <? T (576)

Note (%), = E(c?) is normalized to 1.

o4
dlogp  dg 1 98 <u—ozg,)3>a

dp Napg[ 0p< o2 >
(-028)% [ &
oo (o)),

W& 9P 4 2g (o), + 2 (o9),

(577)

By examining egs. (S68) and (S70), we find that when A > g, a > b, 0 ~ x, g, decays weakly with p
while g, increases weakly with p (also confirmed by numerical calculation, Appendix 2—figure 1B,C)

0 ag;
g,<0, 8i

— >0.
dp dp

It is therefore straightforward to see from eq. (577) that the higher-order moment (e.g., E(c*)) in
the activity variance contributes to reducing the p-dependence in the eigendensity function.

The relationship between collapse index (Cl) and eigendensity
In this section, we show how the collapse index (Cl) introduced in Methods is related to eq. (S77),
namely how the eigendensity changes with the neuronal density in the functional space. Recall the
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definition of Cl in eq. (13):

lo;
1 g 40

dlog A
og A(q) dlo

" 10g(40/49)) Jiogq, | 9logp
where -
g = / p(A)dA
i
we used implicit differentiation to compute 249 For clarity, we write the function g(4, p) explicitly

dlogp

involving 4 and p as Q(4, p) in egs. (S78) to (S80).

F(A(q,p).q.p) = Q(Aq,p),p) —q=0 (578)
dF(A . q, 0F(A(q, p),q, 0F(A(q, p), q, p) 0A(q,
(4. 0).9.9) _ ((qp)qp)Jr (Mg, p), q,p) (‘“’)zo (S79)
dp dp A dp
9 ) 9F(A(4.p).9.p) 90(Mg.p).p)
q.p _ _ dp _ ap
dp  FQGnap) T 00(n).p) (580)
A 04
Now we can write Cl as
94(p.2)
dlogi(g.p) _ _p 0Mg.p) _ __»p o (S81)
dlogp Mg.p) 9p Ag, p) 242
A
from which we arrive at eq. (15) in Methods:

logqo 1 5100 A 90 =

[ = -_____1_______ ___f2§§___gfzf_£22 ' d 1()Eg q= -_____1_______ ‘//” — _fz_ {;fl

log(9o/a1) Jiogq, dlogp log(qo/a,) Jyy | 94 %

04
2 (582)

N S A IR ) PR U A W

log(q/41) Map) qi 3—3 04 log(qy/q,) (40) qAap

Finally, we can rewrite Cl as a function ofj—‘; using a double integral:

IZ; Alq1) i"_‘l' _ ; Aqp) ; L/oo W 01)(12)
log(qy/41) o) qA dp log(qo/41) o ! qi A ’ ap
00 dln p(4y) (5;5333)
] O Al dlzp(/lz)%ﬂz

_IOg((Io/‘h) ey M : /,:o dA,p(4,)
Compare high-density theory and Gaussian variational method

This section aims to determine the conditions under which the high-density approximation aligns
with the simulation results. To this end, we begin by comparing the kernel operator G, (k) in the
high-density quadratic action and G, (k) in the variational approximation. We identify the condition
when high-density theory would agree with the variational method as well as the numerical simula-

tion, namely z > (;‘%GU(%). Secondly, we give a precise re-derivation of the high-density result by

incorporating this condition into the variational approximation. Finally, we substitute [ (‘;Z‘d G, (k)

with f kG (k) and estimate the parameter regime where the high-density theory would agree
@n)d h
with numerical simulation. This analysis yields a deeper understanding of the relationship between

high-density theory and variational method, and how they relate to simulation results.

A simple comparison of the two methods
For the sake of simplicity, we consider the correlation matrix with p(c) = 6(c — 1) in this section.
Returning to the explicit result (egs. (526) to (S28)),
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v [ (584)
(E"(Z»=(detf)_"/2(2)77/ D[yr*1e’

—00

In the high-density approximation (eq. (532))

de)-c']\]n,\mﬁ2 ]n +°°_._>,_1~ 2N AN (2
5= [ PRIV L [ S e

(S85)
1 n +00
=—3 ZT /_ ) dxdX' G, (% = )P (D (R)
Here we introduce G, as the kernel operator in the high-density quadratic action.
_ . N . (S86)
G;](x—j/')=f_l(x—5;)—V—5(x—J_")
Z
Fourier transform of G, leads to
R Fk (S87)
Gy = —LE_
1- L1k
In the variational method (eq. (S560)), we have
G=—t®_ oo + (S88)
1-Cfk) z— [ i Gull)

where we introduce G, as the kernel operator in the variational quadratic action. Clearly, the con-
dition that G, (k) approaches G, (k) is given by

p &% ~ -
Cm? . z» / 2y 0o

The function ratio,(z) is defined as:

. 1 [ dk ~ -
ratio,(z) = Z 20 G, (k)

As ratio,(z) approaches 0, G, (k) becomes identical to G, (k). Note that G, (k) is difficult to compute;
instead, we can compute and analyze [ %Gh(%) (see Appendix 3)

kG, (589)

ratio,(z) = l —_—
z Q2n)d

A re-derivation of the high-density result using the grand canonical ensemble

In this section, we re-derive the high-density result from the grand canonical ensemble and the

variational method. The derivation also allows us to reproduce the approximation condition

discussed in the previous section.

Let us recall the calculation of the free energy F, (eq. (557)) in the variational approximation
with p() = 6(c — 1)
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1711

1712

1713

1714

di%
F, =% / kd G(k) —N(2)? exp(——Tr log(1 — l

v
-3 / o Zlog(Gaﬂac))
vn [ d'%k Gk [ 1 dEH]';
=— z)"2 - = G(k)
@m) 7k Q2r)d
lim F, =22 ¢’k Gk + Mg [z— &' Gk )] —ﬁ
o0 Qo fky 2 Qn)!
Following egs. (S58) and (560):
SF,
— =0
6G
1 p _
flo z- [ 260 G
g(z)—hmiiF iin = lim —(— Y
nN dz rHO nN dz n—0 nN "0z
2 0 1
=lim — —F, -
n—-0 nIN 0z Z—f (27[;; G(k)

G( )

(2 )
(S90)
Yn ﬂ1o Gk
2 | @op
o . (S91)
any logG(k) + N
(S92)
(S93)
4k aGk) o
@m0z 3Gk (594)

We can perform the same calculation in the high-density theory by considering the limit ratio,(z) =

1 a9k
Zf (MdG (k) - 0:

_Vn [ d'%k G(k)
2 Q2r)? f(k)

lim lim

n—0 ratio,(z)—0 v

_Vn d’%
/ 2ny 10gG(k)+N

i/ o

(S95)
_Vn ¢’k Gk _Ml dk =
B Qn) 7k 2 0g(z) Q2r)d Gk
Vn d’%k 57
- — any logG(k) + N
Therefore, we can define the free energy F, in the high-density theory as
vn [ dk Gk Nnl [ &k ~- V ¢ (596)
=[S ® tog(z) - 211 [ LK Gy - U K00 Gl 4 N
(2r) f(k) 2 2r) (2n)
then
SF, 0 (S97)
56
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Lo L (598)
T = G
s This is precisely eq. (S87) derived in the previous section.

20, 1 1 [ d%k ~-
g(z)thma—Fh—;+—2 (zﬁ)dG(k)
_1 o 1 ek fk
z (27[)d — pf(k)
L, % fd) (S99)
=— —+ —_—
z @)z — pf(k)

_L|L [ 4k z=pf0) , [ dk _F®
z Cr) z—pfly J COTz—pf(k)

_1 / ¢k 1
Pt QEY 2 pf(h)

w6 Which is the resolvent of high-density approximation (eq. (S34)).

wmr  Explicit expression for the integral

s In this section, we provide an explicit expression for the integral / Gh(k) instead of

@r )d
me [ (g ;‘dG (k), which is implicit and can not be calculated analytically. Like the derivation in Ap-

o pendix 1—figure 17, we consider the lower and upper limits of integration for [ %Gh@) as [0, %].

121 We then approximate the Fourier transform f(k) as a power-law function. To ensure that the singu-
w2 larity f(k,) = f} of G, (k) falls within the integration range of [0, =], we introduce a simple correction

s x, = C(2) to fky:

. . (S100)
fk) = Cllk|"~ ~

FRYE=) .
s Where C = Cye#, Cy =24#x? r—j) are all constants depending on the parameters d, u, and e. Then

2
1725 We compute the contour integral (Appendix 2—figure 1A) by Taylor expansion. As a result, we have

T gy [ EE_TE
e T, L (k)
oo 1- P+]( +X) 1-j
1 crs x— - - z -P
27[(;4 d) p(z - P+ meot(z(1 P))(p +x,)7")
= XTI E 4 x )T z (S101)
_— - —_PyN(3 -1
27[(/4 d) p(z —P+J meot(n( P))(p +x,) x,)
1 cox1P+j( +x)1, . .
“d—m© (2 m ﬂcot(;rP)(; Fx) pxg)
S px =+ 17 : L
2(d M)ped 204 1= )P =) ircot(ﬂP)(pXS +1) Z+px€)

ms where P= -4 > 1.
d—p
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Now let us take a close look at the behavior of the function ratio,(z) (eq. (S89)), plotted in
Appendix 2—figure 2A,B. For small z, this function is negative. It then crosses zero and has a peak.
As z > oo, the ratio, approaches zero. This is because eq. (S101) approaches a positive constant,

which is given by
. Ak~ - 741G,
lim / 2 S0 = 5302 WP — P’

where C, = C(2)". For z > 1, we find the leading order expansion at j = 1 already gives an accurate
approximation (Appendix 2—figure 2A,B).

dk ~ (z) N
@myd "
1-P(2 ~1 2-P(Z -2 5102
1 oz X, (; +x,) X2 (; +x,) 2 4 ( )
—C*= + — weot(nP)(= + x,) dn
2zd-p)  p | (P—=1)P) P=2)P-1 P z+ px,
B
101 e ratiop, 1.0 e TatI0N
—— ratiop, expand to j=100 —— ratio,, expand to j=100
05 —— ratiop, expand to j=1 0 —— ratio,, expand to j=1
S oo S 00
B 8
-05 - 0.5
-1.0 -1.0
107" 10° 10’ 10° 10° 107" 10° 10° 102 108 2 4 6 8 10
z z dimension

Appendix 2—figure 2. Relationship between ratio, and z. A. p = 1024, B. p = 256. Blue line: ratio, calculated
numerically. Red line: 100-order expansion of eq. (S101), which perfectly overlaps with the blue line. Green
line: expansion to the first order. Other parameter: u = 0.5, d = 2, e = 0.03125. C. Relationship between pe?
and dimension d with fixed 5 (eq. (S105)).

Estimate the parameter condition when the high-density theory best agrees with numer-
ical simulation

By analyzing the properties of the function [ %Gh@), we think the high-density theory provides
an accurate approximation when the zero-crossing of / %Gh@) is near z = 1 (the peak of low-
density result Mézard et al. (19_99))
The root z, of the integral / (gi;‘d G, (k) is given by
pX,
=g,(d,n) (5103)
Zo

It is easy to see that g,(d, u) is a function of P (or %) from eq. (S101). We can rewrite eq. (5103) as

pX,
2

D) (5104)
u

Here, we can also see that z, can be expressed as:

com' 4 ped
81(d, )

Using this expression for z, and letting z, = 1, we can derive the following equation for pe?, a
dimensionless parameter that determines the condition when the high-density theory is an accurate
approximation of our ERM model:
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pel=— 1 (5105)
24- Mﬂ”’il“( £)
Appendix 2—figure 2C shows how pe changes as a function d for a small and fixed u/d. For exam-
ple, whend =2, u = 0.5, ¢ = 0.03125, we find

pe? =0.83, or p =850

s This estimate is also consistent with our numerical simulation (Appendix 1—figure 3).

ws  Wick rotation

s TO ensure mathematical rigor in Appendix 1—figure 17, we should make sure that the action S,
war N eq. (S43) is a real number. Here we use Wick rotation to transform eq. (525) to eq. (527). The
s Gaussian integral eq. (526) can be divergent when G=!'(X — ) is not positive definite, To address
e this issue, we can always write the partition function (£"(z)) as a Gaussian integral by choosing the
wso appropriate axes with Wick rotation.

N +eo (S106)
(E"(2)) = 2ri)~ (det f)_”/z/ Dlyp“]e™

—00

S, =NlnA-< Z/ dzd% £ = )W @)

st We can now change the integration variables by diagonalizing ¢* to ¥* via ¢* = Qy@* ,where Q is
w752 Fourier base

. - (5107)
(@) = an¥ @ [ D

—o0

., n +00
~ [ - o~ e e
=NIhA-= ke f w (k)
S, n 2a§=1/—wdkf B (k)

0

- © (5108)
A=/_ %(z)zexp[ Z‘, (k)Z]

wss by letting L — oo. Note that 51 is analytic. Thus if
lim 5t =0
w*—(1-i)oo

s« and the convergence rate is faster than 1/2, we can apply the Wick rotation y*(X) — y/”(i')e_i%I
s instead of computing the integral on the real axis C;, we now rotate the integral line 45 degree
wss  clockwise to C; in the complex plane:

5109
/ D[l[’\/a]esl — / D[lf/“]esl ( )
C G

lim e51=0
2= (1+i)c0

On the other hand, if

w7 and the convergence rate is faster than 1/i2, we can apply the Wick rotation y*(%) — w*®)e's,
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Appendix 2—figure 3. Wick rotation in complex plane

namely to rotate the integral line 45 degree counterclockwise to C,:

S110
/ D[l[’\/a]esl — / D[lf/“]esl ( )
C, Cy

As a simple example, consider a one-dimensional Gaussian integral

o0
/ dxe e
—00

When k > 0, we can use the Wick rotation x — xe™'%

dxe ™ = ¢7'% dxe™* = e_'%\/ I _ \/ 2—”
—00 —00 k ik

When k < 0, we can use the Wick rotation x — xe'%

dxe ™ = ¢'% dxe = '3 1/ 2z = \/ 2—”
—s —o —k ik

z

Without loss of generality, we rotate y*(X) — w?(X)e”'s in Appendix 1—figure 17 for subsequent
calculations.

Grand Canonical Ensemble

When using the Gaussian variational Approximation, we consider a critical extension from the
canonical ensemble to the grand canonical ensemble when computing the partition function (eq. (56)).
We would like to justify this approximation in this section. Recall that the resolvent is given by

8(2) = — 0. (INE(2))

where E(z) can be viewed as the canonical partition function, the (...) is the average over all random
matrices C for a given N. Let us now generalize (eq. (56)) into grand canonical ensemble, namely

g(z) = (-%az (lnE‘.(z))>N 111
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where ()N indicates that we need to average over all possible random matrices and across all
possible N, with the probability to have a matrix size N given by the Poisson distribution P(N) =
‘”" ,Where a = (N). When (N) is large, P(N) has a very sharp peak at (N), and eq. (5111) can be
approxmated as

2 =
g2y~ —mdz (InE(2)) vy (5112)

Using the replica trick, we recall eq. (S9)

) .
g(z)= £§%_maz In (E"(2))

Let us now define the grand canonical partition function as

oo ) ‘Z’V
2= 2 Em@) gy (5113)
Likewise, the resolvent in eq. (S9) is generalized to
() =lim-—2—0,InZ (5114)
& - n—0 <N>n z ’

To see whether this definition makes sense, we write

2 Ly 0:(Ey(2)a"/N!

g(z) = 1133 -

(N)n Z
2 ZR 00+ a(nEy(@)la" /N
“ =0 (N)n = a
T (EL ) s
2 Xy 0InEy(2)a"/N!
(N) o
=V N!

= (]%J) <1“(Z)>N

where the second equality uses the identity

n

InE =lim s
n—0 n

[1

and the last equality is indeed eq. (S112) discussed earlier.

Returning back to the explicit form of the grand canonical partition function in our ERM model
(egs. (526) to (528)), we have

+oo
Z= / D[jr*]eSoteA =/ D[ij*]eSo+N4, (S116)

Here y is the auxiliary fields (eq. (512)), S, = —= Z j“’" dxdx’' f~1(X = ¥ )W )pe(*') and A are terms

defined in egs. (526) to (528). eq. (5116) is used in Appendix 1—figure 17 to compute the free
energy.

E-l balanced asynchronized model Summary

In this section, we discuss the E-I balanced asynchronized model Renart et al. (2010), which pre-
dicts a different scaling D N under random sampling, since the variance EI.’;I.(cI.Zj) scales as 1/N and
diminishes as N approaches large limit.
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Model

The simulation of binary networks involves updating neuron states within a network architecture
identical to analytical studies. The update rule is probabilistic, with neuron activities set based
on synaptic currents and a firing threshold. The dynamics resolution improves with network size,
with neuron time constants effectively representing changes in firing activity. Parameters for sim-
ulations include connection probabilities, mean rates, thresholds, and synaptic strengths, scaled
appropriately for network size.

Update Rule: 6%t + 1) = © (Z,- I (1) - 9;*)

Dynamics Resolution: dt = #

In the simulation of binary networks, the model's dynamics are governed by a set of param-
eters, each with a specific role:

o?(t + 1): This represents the state of neuron i in population « at the next time step 7 + 1. The state
is binary, where 1 indicates the neuron is active (firing) and 0 indicates it is inactive.

©(-): The Heaviside step function used in the update rule. It determines the neuron’s next state
by comparing the net input to the neuron against its firing threshold. If the net input exceeds the
threshold, the neuron'’s state is set to active; otherwise, it remains or becomes inactive.

Y Ji‘;ﬂaf(t)i This sum represents the total synaptic input to neuron i from all neurons j in popula-
tion g attime z. J,.j" is the synaptic weight from neuron j in population g to neuron i in population
a, and af(z) is the state of neuron j at time .

6¢: The firing threshold of neuron i in population a. It is the value against which the net synaptic
input is compared to determine whether neuron i will fire (transition to state 1) or not (remain in
state 0).

a = {E,I}, p = {E,I,X}: Represents a specific population of neurons within the network. E:
excitatory neurons, |: inhibitory neurons, or X: external source of neurons that provide inputs to
the network but are not influenced by the network’s internal dynamics.

Firing Rate Correlation r
The mean firing rate correlation E(r) scales inversely with the network size N, specifically, E(r) ~
1/N. The standard deviation ¢, of r decays only as 1//N Renart et al. (2010).
Given that the variance of r, denoted as Var(r), is % and the expected value of r, denoted as E(r),
is % where N is the sample size, and a and b are constants, we aim to calculate E(?), the expected
value of the square of the correlation coefficient r.
The term Ef, (c}) in PR dimension is given by:

Var(r) = E¢?) — [E(r) (S117)

Substituting Var(r) = % and E(r) = % into the equation, we get:

k 2 2 b a 2 1
Ei#j(cij)zE(r)zﬁ-i-(F) Nﬁ (5118)
Thus in PR dimension Dpg(€) = — 70 the term N E[o*] and N(N = DE,, [ fth
usin imension Dpr(C) = N B NN E i eterm [c*1and N(N - DE, [c}] are of the
0'2 2
same order, and the PR dimension will not reach the upper bound (EE[ []2)] .
i#j 1655
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w7 Appendix 3

Appendix 3—figure 1. Neural activity patterns in anatomical and functional space during hunting
(click here). Single-trial examples of fish 1 and fish 3. A. Inferred firing rate activity in anatomical space. Scale
bar, 100 um. B. Inferred firing rate activity in functional space. Functional space organization of the control
data inferred by fitting the ERM and MDS in Result. The cyan ellipse serves as a visual aid for the cluster size:
it encloses 95% of the neurons belonging to that cluster (Methods). The inset illustrates the functional space
organization, similar to that shown in Appendix 1—figure 15C. The colorbars in panels A and B depict the
inferred activity magnitude of individual neurons. C. Simultaneous behavior recording alongside the neural
activity. Time, seconds.


https://www.youtube.com/watch?v=sQ5uq_MiwDg
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